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Abstract. This paper proposes the use of session types to extend with behavioural information
the simple descriptions usually provided by software component interfaces. We show how session
types allow not only high level specifications of complex interactions, but also the definition of
powerful interoperability tests at the protocol level, namely compatibility and substitutability of
components. We present a decidable proof system to verify these notions, which makes our approach
of a pragmatic nature.

1. Introduction

Component-Based Software Development (CBSD) is gaining recognition as the key technology for the
construction of high-quality, evolvable, large software systems, developed in timely and affordable man-
ners. CBSD advocates the development and usage of plug-and-play reusable software, with the goal of
reducing developing costs and efforts, while improving the flexibility and reliability of the final applica-
tion due to the (re)use of software components already tested and validated.

In CBSD, components are prefabricated pieces, perhaps developed at different times, by different
teams, and possibly with different uses in mind. The development effort now becomes one of gradual
discovery about the components, their capabilities, their internal assumptions, and the incompatibilities
that arise when they are used in concert. Therefore, the notions of substitutability and compatibility of
software components play a critical role in CBSD, since we need to be able to check whether a given
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component can successfully replace another in a particular application, or whether the behaviour of two
components is compatible for them to inter-operate.

In general, components are described by means of their interfaces, which define their functionality
and capabilities independently from any particular implementation. Component interfaces currently pro-
vide this information in terms of the signature of the services offered by the component, and commercial
component platforms (such as CORBA, EJB, or .NET) provide the basic infrastructure for component
interoperability based on them. This allows to sort out most of the “plumbing” issues when putting
components together to build applications. However, all parties are starting to recognise that signature
interoperability is not sufficient for ensuring the correct development of component-based applications
in open systems [23].

Traditional approaches to overcome this limitation try to add semantic information to interfaces,
using different notations (pre/post conditions, temporal logic, Petri nets, refinement calculus, etc.), and
are also concerned about compatibility and substitutability of components (see [15] for a comprehensive
survey). However, these proposals share a common drawback: the definitions of interoperability tests and
of other behavioural properties of components and applications, based on their full semantic descriptions,
are either undecidable or have a high computational complexity, what hinders their practical utility.

Half-way betwen signature and semantics approaches, lies another possibility that concentrates on
the components’ interactions with other components, defining their service access protocols, and the
way they use other components’ services. More than signature information, this approach allows the
definition of compatibility and substitutability checks among components at a computational cost lower
than other semantic tests.

Some authors have dealt with component interoperability at this level [5, 14, 22]—usually called the
protocol level—, and have shown its benefits. However, the existing approaches, when decidable, still
present some limitations:

• First, the description of the components’ observable behaviour is not modular: each component
is assigned a single protocol description, which defines all its interactions with the rest of the
components in the system. This mixes up all interactions, and usually forces the introduction of
irrelevant details into the protocol specification, e.g. the interleaving among unrelated interactions.

• Second, the computational complexity of most of the tests is high, due in part to the fact of having
to check full protocols. Typical (pairwise) component interactions are very simple, and this should
reflect in simpler compatibility tests.

In this paper we use the concept of session types [11–13, 19] for describing the dynamic behaviour
of components. Sessions are partial protocol specifications, in which we only pay attention to the be-
haviour of a component’s interface. Such an approach allows modular specification of the behaviour of
the components, providing more than just signature information, and permits precise definitions of com-
patibility and substitutability tests. The main strength of our approach is that these notions are decidable
and algorithmically checkable, at a low computational cost.

Furthermore, session types are types, and therefore supported by a type discipline. This is a key
element of the structuring method that provides typability checks between a program implementing a
protocol and a session type describing its intended use. Moreover, the framework also permits checking
component substitutability based on the concept of session subtyping, which is decidable and computa-
tionally tractable, in contrast to the—when decidable—exponential tests that result from the use of traces
or process algebras in protocol descriptions.
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protocol Auctioneer {
session withASeller =
+{ selling: ![string, float];
&{ sold: ?(float); end

| notSold; end
}

}
session withABidder =
+{ register: &{ wannaBid: ?(string, float); ![boolean]; Bidding} }

Bidding =
&{ wannaBid: ?(string, float); ![boolean]; Bidding

| itemSold: ?(string); Unregistering
| youGotIt: ?(string, float); Unregistering

}
Unregistering =
+{ unregister: end }

}

Figure 1. Distributed auction bidding.

Our work builds on that by Honda et al. [12, 13, 19], which initially introduced session types for
describing structured communication. Protocol compatibility and substitutability tests are defined using
the subtyping relation defined by Gay and Hole for session types [11]. In this paper we first complement
those works by introducing the notion of compatibility between session types, prove some of its proper-
ties, and then study how session types can be successfully applied not only at the theoretical level, but
also in a commercial environment such as the one that CORBA provides. In addition, we also discuss
some implementation details, namely how to check that a given object implementation conforms to a
session type that supposedly describes its behaviour.

The structure of this paper is as follows. After this introduction, Section 2 introduces the language we
propose for describing component interactions, using an example application that will be used throughout
the paper. Section 3 introduces the type discipline supporting the language, including an algorithmic
subtyping relation for session types. This relation also serve us to define the notion of compatibility
between components. The application of our theoretical results to the particular case of CORBA is
presented in Section 4. In Section 5 we discuss the sorts of tests that can be carried out with our proposal,
both statically and during run-time. Finally, Section 6 relates our work to other similar approaches, and
Section 7 points to future work.

2. Expressing component interactions via protocols

We illustrate the usage of the language via an example. Consider a distributed auction system, with three
kinds of players: sellers that want to sell items, an auctioneer that sells items on their behalf, and bidders
that bid for an item being auctioned.



4 A. Vallecillo, V. Vasconcelos, A. Ravara / Typing the Behavior of Software Components using Session Types

The protocol that describes the interactions of the auctioneer with a seller (Figure 1) is simple: there
is only one operation that sellers may invoke on an auctioneer—selling—where they provide the bidder
with a description of the item to be sold (a string), and the minimum price they are willing to sell the
item for (a float). This accounts for the +{ selling: ![string, float]; part of the protocol. Sellers then wait
on the outcome of their request. Two things can happen: either the item was sold (in which case the
seller gets the price the item was sold for), or the item was not sold. The first case is modeled by the
acceptance of operation sold; the second by the operation notSold. In either case the protocols halts, as
indicated by the end mark.

We describe protocols centered on the clients, sellers and bidders in this case. The distinction be-
tween the outbound operation +{selling: . . . }, and the inbound operation &{sold: . . . | notSold: . . . } must
be stressed: the former denotes an operation invoked by any seller (and thus provided by the auctioneer),
the latter describes an operation provided by a seller (and thus invoked by an auctioneer).

The auctioneer’s protocol with a bidder is slightly more complex. Bidders start by registering them-
selves at the auctioneer, then enter an interactive bidding session, and eventually unregister, thus leaving
the protocol. Register is an operation without arguments. Upon registering, the bidder gets a bidding
proposal (wannaBid) containing a description of an item (a string) and a price (a float); to which they
answer “I am interested” or “I skip” (a boolean). This accounts for the &{ wannaBid: ?(string, float);
![boolean]; part of the protocol. The interactive session starts then, as described by the Bidding “loop”:
the bidder must be ready for three different kinds of requests coming from the auctioneer: new wannaBid
challenges (either for the same item or for a distinct one), and two different acknowledgments. The auc-
tioneer request itemSold says that the given item is no longer for sale (it may have been sold, or the the
price may have got below the minimum required by the seller); request youGotIt comes with the item
description and the final price. Notice that wannaBid operations brings the protocol back to the Bidding
loop, whereas the two acknowledgments take the protocol to the unregistering phase and then to halt.

Consider now the protocol for a potential seller: it interacts with an auctioneer willing to accept the
description of the item to be sold (a string), and its minimum price (a float). Then it waits for the client
to provide the outcome: sold or not notSold. Below is a possible description.

protocol Seller {
session withAnAuctioneer =
&{ selling: ?(string, float);
+{ sold: ![float]; end

| notSold: end
}

}
There is a close relationship between session Auctioneer::withASeller and session Seller::withAn-

Auctioneer: where one says select (+) the other says branch (&), where one says output (!) the other
says input (?). In fact, the two sessions are complementary or dual (the exact definition is in Section 3).
Duality is what guarantees that sessions do not go wrong: it precludes the standard “message not under-
stood” error (operation not provided, wrong number of arguments, or wrong sort for an argument), and
also problems derived from misunderstandings of the next operation in a protocol (both partners output
at a given point; one partner ends the protocol whereas the other requests a different operation).

As a last example consider a more apt seller, that after initiating the selling process, is able to process
three kinds of requests: the familiar sold/notSold, as well as the new lowerYourPrice, to which the seller
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Protocol ::= protocol X {Sessions}
Sessions ::= session X = T . . . session X = T

T ::= &{m1 :T1 | · · · | mn :Tn} | +{m1 :T1 | · · · | mn :Tn} |
?(T̃ );T | ![T̃ ];T | ?(gsort);T | ![gsort];T | X | µX.T | end

sort ::= string | float | boolean

Figure 2. A grammar for describing protocols.

may refuse or assent. In the latter case the seller sends a new price, and the selling process restarts. Here
is a possible definition.

protocol SuperSeller {
session withAnAuctioneer =
&{ selling: ?(string, float); Selling }
Selling =
+{ sold: ![float]; end

| notSold: end
| lowerYourPrice:
&{ ok: ?(float); Selling

| noWay: end}
}

}
Can a SuperSeller try to sell an item to an Auctioneer? The SuperSeller has more behaviour than

the Seller: he can conduct all the sessions a Seller conducts (basically, selling-sold and selling-notSold),
but also more sophisticated sessions (such as selling-lowerYourPrice-ok-lowerYourPrice-ok-sold). Es-
sentially, SuperSeller::withAnAuctioneer has more-or-equal selections (+), and less-or-equal branchings
(&); session SuperSeller::withAnAuctioneer is a subtype of session Seller::withAnAuctioneer: we write
SuperSeller::withAnAuctioneer  Seller::withAnAuctioneer (the exact definition is in Section 3).

What makes session SuperSeller::withAnAuctioneer compatiblewith session Auctioneer::withASeller?
The fact that the former is a subtype of a type (Seller::withAnAuctioneer) that is dual to the latter.
In this case we write SuperSeller::withAnAuctioneer ./ Auctioneer::withASeller. Finally we may say
that protocol SuperSeller is compatible with protocol Auctioneer since there is a session in the former
(withAnAuctioneer) that is compatible with a session in the latter (withASeller). SuperSeller is compatible
with Auctioneer, only that part of its programmed behaviour never gets excited by the basic Auctioneer.

3. A type discipline for sessions

Two are the key concepts we are interested in this paper: component substitutability and component com-
patibility. The former refers to the ability of a component to replace another in such way that the change
goes unnoticeable by the clients. The latter defines when two components can work properly together,
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T  S 2 ⌃
⌃ ` T  S

(S-ASSUMP)

⌃ ` end  end (S-END)

⌃ ` T  S

⌃ ` ?(gsort);T  ?(gsort);S
(S-SORTIN)

⌃ ` T  S

⌃ ` ![gsort];T  ![gsort];S
(S-SORTOUT)

⌃ ` T  S ⌃ ` Ti  Si 8i 2 {1, . . . , n}
⌃ ` ?(T1 . . . Tn);T  ?(S1 . . . Sn);S

(S-TYPEIN)

⌃ ` T  S ⌃ ` Si  Ti 8i 2 {1, . . . , n}
⌃ ` ![T1 . . . Tn];T  ![S1 . . . Sn];S

(S-TYPEOUT)

⌃ ` Ti  Si 8i 2 {1, . . . , n}
⌃ ` &{m1 :T1 | · · · | mn :Tn}  &{m1 :S1 | · · · | mm :Sn+k}

(S-BRANCH)

⌃ ` Ti  Si 8i 2 {1, . . . , n}
⌃ ` +{m1 :T1 | · · · | mm :Tn+k}  +{m1 :S1 | · · · | mn :Sn}

(S-SELECT)

⌃, µX.T  S ` unwind(µX.T )  S

⌃ ` µX.T  S
(S-RECL)

⌃, S  µX.T ` S  unwind(µX.T )
⌃ ` S  µX.T

(S-RECR)

Figure 3. Subtyping system.

if connected. These concepts can be considered as the two flip sides of the component interoperability
coin. In this section we precisely define these concepts within the framework of a type discipline.

The language of types The language we use to describe protocols is generated by the grammar in
Figure 2, where P̃ describes a sequence of zero or more P . The intended meaning of most constructors
is exemplified in the previous section. The recursive type constructor µX.T constitutes the only binder
in the language, binding variable X in type T . Substitution T [S/X], of a type S for a variable X in a
type T , is defined accordingly, and so is alpha-equivalence. We work up to alpha-equivalence.

The examples in the previous section are defined with equations, rather than with explicit recursion.
Here we adopt explicit recursion, since it simplifies the theory. For example, session SuperSeller::
withAnAuctioneer is translated into

&{ selling: ?(string, float); T }
where T is µX. + { sold: ![float]; end | notSold: end | lowerYourPrice: T 0 }
and T 0 is &{ ok: ?(float); X | noWay: end }.
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?(S̃);T =![S̃];T

![S̃];T =?(S̃);T

&{m1 :T1 | · · · | mn :Tn} = +{m1 :T 1 | · · · | mn :Tn}
+{m1 :T1 | · · · | mn :Tn} = &{m1 :T 1 | · · · | mn :Tn}

end = end
X = X

µX.T = µX.T

Figure 4. The dual of a type.

Subtyping Figure 3 defines a subtyping relation for session types, as in [10]. As usual, T is a subtype
of S, written T  S, if T can be used in any context where S is used. Therefore, T should have more-or-
equal selections (+) and less-or-equal branchings (&). Branching and selection behave in a co-variant
manner with respect to subtyping, which is also co-variant for the input, but (as usual) contra-variant for
the output.

The rules for algorithmic subtyping are of the form ⌃ ` T  S, where ⌃ is finite set of inequal-
ities T  S, meaning that type T is a subtype of type S, assuming the inequalities in ⌃, and where
unwind(µX.T ) def= T [µX.T/X]. When ; ` T  S is derivable, we simply write T  S.

Using this operator, in our context, an expression ‘T  S’ will (indistinctly) mean: “T is more
restrictive than S”; “S is more general than T ”; “T can (safely) replace S”; or “S is substitutable by T ”.

Type duality Section 2 hints that sessions Auctioneer::withASeller and Seller:: withAnAuctioneer are
dual because where one says select (+) the other says branch (&), where one says output (!) the other
says input (?). To obtain the dual type T of a type T , we use the inductive definition in Figure 4, taken
from [13], where S stands for a sort or for a type. To check that two given types S and S0 are dual to
each other, we obtain the dual S of S, and check that both S  S0 and S0  S.

Substitutability and Compatibility Based on the subtyping relation, we are finally in a position to
define the concepts of substitutability and compatibility between session types. Substitutability is simply
subtyping; T is compatible with S is T is a subtype of the dual of S.

Definition 3.1. Let T and S be session types. We say that:

1. T can safely substitute S, if T  S;

2. T is compatible with S, and write T ./ S, if T  S.

Example: SupperSeller is compatible with Auctioneer According to the discussion in Sec-
tion 2, we show that session T

def= SuperSeller::withAnAuctioneer can safely substitute session S
def=

Seller::withAnAuctioneer, and that session T is compatible with session U
def= Auctioneer::withASeller.



8 A. Vallecillo, V. Vasconcelos, A. Ravara / Typing the Behavior of Software Components using Session Types

For the subtype part, recall that S is

&{ selling: ?(string, float); S0 }
where S0 is +{ sold: ![float]; end | notSold: end }

and that T is

&{ selling: ?(string, float); T 0 }
where T 0 is µX.+{ sold: ![float]; end | notSold: end | lowerYourPrice: T 00 }
and T 00 is +{ ok: ![float]; X | noWay: end }.

To show that T  S, apply first the rule S-BRANCH, followed by S-SORTIN. We are left to prove that
T 0  S0. Applying rule S-RECL, yields unwind(T 0)  S0. Finally, applying S-SELECT we are left with
![float]; end ![float]; end (which follows by S-SORTOUT; S-END), and end end (which follows by
S-END). Notice how the recursive structure of SupperSellerwas accounted for by rule S-RECL, and how
its extra branch (lowerYourPrice) was ignored by rule S-SELECT.

For duality, recall that U is

+{ selling: ![string, float]; U 0 }
where U 0 is &{ sold: ?(float); end | notSold: end }.

To show that T ./ U we compute U , using the rules in Figure 4, to obtain S, and we are done, since we
have already proved that T  S.

Results The main contribution of this paper is the decidability of the two notions we propose, compo-
nent substitutability and component compatibility. Before that, we show a few other important properties
of these notions.

Proposition 3.1. Subtyping  is a preorder.

Proof:
Reflexivity follows by induction on the structure of the types involved, taking k = 0 in both S-BRANCH
and S-SELECT rules. Gay and Hole ([11], Lemma 5) show that subtyping is transitive. ut

It follows directly from the definition that duality is symmetric. Furthermore, it has an interesting
relationship with subtyping.

Proposition 3.2. T  S if and only if S  T .

Proof:
A straightforward induction on the structure of the types. ut

We show that compatibility is also a symmetric relation; it is also preserved by subtyping. Notice
that compatibility is neither reflexive nor transitive. It is not reflexive because duality is obviously not
reflexive. It is not transitive because a session is never compatible with itself.
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Proposition 3.3.

1. Compatibility ./ is symmetric.

2. If T ./ S and U  T , then U ./ S.

Proof:
The first clause is a direct consequence of lemma 3.2. The second clause is a consequence of the transi-
tivity of subtyping, lemma 3.1. ut

Finally, the decidability of the notions of substitutability and of compatibility of components result
from a suitable reading of the rules in Figure 3.

Theorem 3.1. Subtyping and compatibility are decidable.

Proof:
For subtyping, read the rules in Figure 3 upwards, with the additional constraint that S-ASSUMP must be
used if applicable, and that S-RECL must be used in preference to S-RECR. To check that T  S, apply
the algorithm to ; ` T  S. Termination of the algorithm is ensured by a suitable metric. See [10] for
details.

To check the compatibility of types T and S, we build the dual S of S, using the definition in Figure 4,
and then check the subtype relation T  S. ut

4. A case study

In this section we study how session types can be successfully applied not only at the theoretical level,
but also in a commercial environment such as the one that CORBA provides.

CORBA is one of the major distributed object platforms. Proposed by the OMG (http://www.omg.
org), the Object Management Architecture (OMA) attempts to define, at a high level of description,
the various facilities required for distributed object-oriented computing. The core of the OMA is the
Object Request Broker (ORB), a mechanism that provides transparency of object location, activation and
communication. The Common Object Request Broker Architecture (CORBA) specification describes the
interfaces and services that must be provided by compliant ORBs [18].

In the OMA model, objects provide services, and clients issue requests for those services to be
performed on their behalf. The purpose of the ORB is to deliver requests to objects and return any
output values back to clients, in a transparent way to the client and the server. Clients need to know
the object reference of the server object. ORBs use object references to identify and locate objects to
redirect requests to them. As long as the referenced object exists, the ORB allows the holder of an object
reference to request services from it.

Even though an object reference identifies a particular object, it does not necessarily describe any-
thing about the object’s interface. Before an application can make use of an object, it must know what
services the object provides. CORBA defines an Interface Description Language (IDL) to describe object
interfaces, a textual language with a syntax resembling that of C++. The CORBA IDL provides basic
data types (such as short, long, float), constructed types (struct, union) and template types (sequence,
string). These are used to describe the interface of objects, defined by types, attributes and signatures
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(parameters, return types and exceptions raised) of the object methods, all grouped into interface defini-
tions. As an example, the Auctionner component presented in Section 2, is described in CORBA by the
following interface.

interface Auctioneer {
void selling (in string itemDesc, in float minPrice);
string register (in Bidder b); // returns an id for the bidder
void unregister (in string id);

}
As we can see, the CORBA IDL allows us to describe the signature of the operations implemented

by a component, but it falls short in several respects: a) it does not mention whom the operations are
targeted at (selling is for sellers; register and unregister are for bidders); b) it does not describe the order
in which operations must be invoked (register first; unregister then); c) it does not allow specifying the
external operations required by the component (sellers must provide sold and notSold operations).

The rest of this section concentrates on how to add protocol information to the description of the
CORBA object interfaces, using the language defined in Section 2.

CORBA object protocols are defined by two collections of interfaces and a collection of session
types. The first collection describes the CORBA interfaces provided (i.e. implemented) by the compo-
nent, each one under a provides heading. Second, we have the collection of external interfaces that the
component requires from other objects when implementing its supported services, expressed by uses
headings (there may be none in case the component does not require any external services). Finally,
we find the specification of each role the component plays in its interactions with other components,
expressed in terms of a collection of session types, each of them indicated by a session clause. The
first two collections contain information at the signature level only, while the last one is in charge of
specifying the dynamic aspects of the behaviour of the component. The grammar for describing CORBA
protocols is obtained from that in Figure 2 by replacing the first production by the one below.1

Protocol ::= protocol X {(provides X)+ (uses X)⇤ Sessions}

The modelling technique that we propose for describing CORBA object interactions is the following.

1. In the CORBA IDL, methods have a return value and three kind of arguments: in, out and inout. In
a method invocation from a client all in and inout arguments are sent in the same order they were
declared in the IDL (which is reflected in the server’s input action ?(. . . ). In the method response
(i.e. the ![. . . ] output action from the server) the first sort is the sort of the return value, followed
by the sorts of the inout and out arguments, in the same order they were declared. Likewise for
method acceptance and reply.

2. Methods with no arguments are considered as if having one argument of sort void, to be added to
those in Figure 2.

3. Special label quit is used in reactive servers to indicate the moments in which a client may discon-
nect from the session.

4. The client’s invocation of method “s m(s1,. . . ,sk)” is modelled as “m:?(s1,. . . ,sk);![s];” inside a
branch (&{. . . }) structure in the server side of the protocol.

1P ⇤ describes a sequence of zero or more P s; P+ is PP ⇤.
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protocol Bidder {
provides Bidder
uses Auctioneer
session withAnAuctioneer =
&{ register: ?(Bidder); ![string];
+{ wannaBid: ![string, float]; ?(boolean); Bidding}

}
Bidding =
+{ wannaBid: ![string, float]; ?(boolean); Bidding

| itemSold: ![string]; ?(void); Unregistering
| youGotIt: ![string, float]; ?(void); Unregistering

}
Unregistering =
&{ unregister: ?(string); ![void]; end}

}

Figure 5. The CORBA Bidder protocol.

5. Analogously, the server’s invocation of method “s m(s1,. . . ,sk)” is modelled by “m:![s1,. . . ,sk];?(s);”
inside a select (+{. . . }) structure in the server protocol.

6. In case of methods that may raise exceptions, the return mechanism is different. Normal termi-
nation is modelled by a special label success, followed by an output action with the sort of the
return argument. Exception raising is modelled by selecting a label with the name of the exception,
followed by the output of the sort of the parameters that the exception returns. If a method may
raise several exceptions, one label is used for each of them.

With this techniques, the protocol that defines the dynamic behaviour of object Bidder is shown in
Figure 5, where Bidder components make use of the services provided by an Auctioneer component,
whose interface is shown above.

It is important to note that session types describing CORBA interactions follow a reduced set of
communication patterns, which are given by a sub-language on that in Figure 2. This is due to the fact
that CORBA imposes restrictions on the communication patterns used by its objects, since client-server
method invocation is the only mechanism allowed. Thus, a server can only offer its methods within a
branch structure, then accept input parameters, output the results, and become either a client or a server
again. But it can never start alternating inputs and outputs in an arbitrary manner.

Another issue worth noticing is the need to accommodate the CORBA particulars when describing
protocols with session types. For instance, comparing the protocols in Figures 1 and 5 we see that
CORBA methods return a value (the ?(void) not present in Figure 1), and that all arguments appearing in
the CORBA IDL interfaces must be present in the protocol description (the Bidder parameter of method
register, and the return of the string identifying the bidder, to be used with unregister). Although not
needed in generic protocols, they are necessary when describing the behaviour of the CORBA objects
implementing a particular CORBA interface.
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5. Checking protocols

As mentioned in the introduction, we are specially interested in checking component substitutability
and compatibility, based on the information now available. We distinguish between static and dynamic
checks. The first ones are carried out during the design time of the applications and are based on the
description of their constituent components. Dynamic checks are needed when there is no behavioral
information available, as it happens when dealing with back-box component instances—whose internals
are not accessible—but we still want to check that its behavior conforms to a given protocol.

Statically checking a component against a session type amounts to type check the program code
describing the component: Honda, Vasconcelos, and Kubo [13] describe a type system for a ⇡-calculus
based language; Vasconcelos, Ravara, and Gay [20] present a type checking algorithm for a functional
multithreaded language.

There are many situations in which protocol compatibility has to be checked at run time, as it happens
for instance when we are programming in a language for which we do not know how to type check con-
formance, or when we do not have access to the source code (this is the common case in component-based
development environments, specially if we are using off-the-shelf binary components, whose internals
cannot be accessed). In these cases, protocol compatibility can be checked by intercepting exchanged
messages and verifying their correctness with regard to the current state of the components. This sort of
information can be used in order to prevent illegal or incompatible messages to reach destination com-
ponents, avoiding incompatibility issues. In this way, system inconsistency situations can be detected
before they happen, and the appropriate exceptions or errors can be raised.

Such a mechanism can be implemented in CORBA using a reflective facility that some ORB vendors
provide: interceptors [18] (also called filters) that allow the interception and observation of the messages
exchanged among components. This mechanism allows a programmer to specify additional code to be
executed before or after the normal execution of an operation. Such code may perform security checks,
provide debugging traps or information, maintain an audit trail, etc. In our case, for each CORBA object,
a filter can be defined that captures incoming and outgoing messages, reproduces its run-time trace, and
checks that received messages are compatible with the behavior defined for that object. Basically, the
interceptor for a particular session type builds an automata whose arcs are labeled with the constructors
of types T in Figure 2 and checks that every incoming or outgoing message is valid with regard to this
automata. In case a violation of the protocol is found, the invalid message is returned to the originator,
using the interceptors mechanisms. Reference [6] provides further information on this sort of tools.

The schema described above can also be used to check conformance to specifications, that is, check
that an implementation of a component conforms to a given specification of its intended behavior. This
is specially important when we are dropping a new component in a given system, and we want to check
that it will not violate the protocols of the components it communicates with. Even if programming
language used to code the new component provides for static session type-checking, we may still need
run-time checks, for the “rest of the system” may be composed of black-box components, whose code is
inaccessibly.
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6. Related work

As mentioned in the introduction, several authors have provided a number of proposals that try to over-
come the limitations that current IDLs present, defining extensions that usually cope with the semantic
aspects of component interfaces and behaviour. We do not cite here the proposals that try to deal with
the full operational semantics of components (the interested reader can consult [15]), just the ones that
cover the specification of the components’ service access protocols.

These proposals use different notations for specifying protocols, from finite state machines to process
algebras (see, e.g., [3, 5, 14, 17, 21, 22]). However, they all share some limitations. First, they do not
allow the modular description of the protocols. Second, the compatibility and substitutability tests that
they provide either are not decidable or do not have a tractable computational complexity. Finally, none
of them are directly supported by a type discipline. Our proposal helps solve these problems, at the cost
of sacrificing some expressiveness—just pairwise component interactions can be expressed in terms of
session types (see Section 7).

Some representative examples of approaches that use different notations for representing the observ-
able behaviour of components follow. In the first place, Doug Lea proposed PSL [14], an extension of
the CORBA IDL to describe the protocols associated to an object’s methods. This approach is based on
logical and temporal rules relating situations, each of which describes potential states with respect to the
roles of components, attributes, and events. Although it is an expressive approach, it does not account
for the services an object may need from other objects, neither it is supported by standard proving tools.

Protocol Specifications [22] is a more general approach for specifying component service protocols
that describe both the services offered and required by components. It is based on using finite state
machines and allows components to be easily checked for protocol compatibility. The simplicity that
allows the easy checking also makes it too rigid and lacking expressiveness for general usage in more
complex open and distributed environments.

Bastide, and Sy [3] use Petri nets to describe the behaviour of CORBA objects, providing their
full operational semantics, and supported by proving tools. This is a very powerful and expressive ap-
proach, that has been successfully used to detect inconsistencies in some CORBA services commercial
implementations [2]. Bastide’s proposal allows much richer information to be included in the objects’
behaviourally descriptions, which may be required in some cases. However, the main problems of this
proposal are the lack of modularity in the description of the protocols, and the decidability and compu-
tational complexity of the tests.

Message Sequence Charts (MSC) is also a notation that permits the description of the interactions
among components, and is now part of UML 2.0. MSCs are very expressive for describing protocol
interactions, but they do not allow to prove properties of the system. An interesting line of research
would be to “type” MSCs using session types, hence allowing substitutability and compatibility tests
between components whose observable behaviour is described with MSCs.

Braciali, Brogi, and Turini [4] also sacrifice expressiveness in order to achieve modularity and com-
putational tractability, when describing and reasoning about component interactions. The authors use
a sugared subset of the ⇡-calculus for describing interaction patterns: sets of interactions that describe
the finite interactive behaviour that a component may (repeatedly) show to the external environment. In
opposition to our work, patterns allow for describing finite interactions only. Canal et al. [6, 7] use roles
for defining partial protocol specifications. Although roles may alleviate some of the computational com-
plexity of the substitutability tests, they are still NP-hard. In this sense our more lightweight approach
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represents an improvement, despite of losing some expressiveness.
Finally, Architectural Description Languages (ADLs) usually include the descriptions of the proto-

cols that determine the access to the components they define. Many ADLs use standard notations for
describing component interactions (such as CSP, CCS, or ⇡-calculus), which allow the simulation of the
application’s behaviour, or the formal derivation of some of its safety or liveness properties. For instance,
the Rapide ADL is well known as a rich pattern language for the simulation of architectural behaviour.
Wright [1] uses CSP for specification, and as a consequence is supported by model-checking tools such
as FDR. Darwin [16] and LEDA [7] are examples of ADLs that make use of the ⇡-calculus for describing
the behaviour of the components of a system. One of the benefits of using standard calculi is that reason-
ing about the system behaviour and correctness can be done using appropriate tools. Our focus is slightly
different, since we are more concerned with the specification of COTS components independently from
the applications they will be part of. What we have shown here is that we can achieve the similar tests
to those carried out by software architects with their ADLs (such as those described in [8, 9]), right from
the objects’ protocol specifications. In addition, our proposal not only contemplates compatibility tests
but it also studies substitutability between components. Another novelty of our work is the dynamic tests
that can be carried out with the interceptors, checking at run time that the behaviour of a CORBA object
conforms to its declared protocol. They help detect incompatibility issues and possible violations to the
protocols.

7. Future work

Session types allow the description of pairwise interactions between components. There are however
situations where dyadic sessions are not expressive enough, where information on how separate sessions
interleave is needed. This fact has surfaced, for instance, in work-flow applications, for which the order
among the various events in sessions is critical. Another concern related to the information conveyed by
session types is the impossibility of proving particular global properties of applications, such as absence
of deadlocks among three or more partners. Session types deal with pairwise interactions, so they only
allow to prove that local, dyadic, interactions are error-free.

The search for alternative uses of session types to describe protocols with multi-party interactions that
allow useful compatibility and substitutability tests is currently under way. We are working on Multi-
Party Session Types (MPST), an extension that allows the specification interaction among more than
two components. With MPST we also help in solving the common trade-off between incorporating all
the component interactions into one large protocol description (hence producing unwieldy and complex
protocols), and breaking it into unrelated pairwise sessions (thus loosing information on how separate
sessions interleave). MPST permits mixing protocols according to the system’s particular requirements,
allowing the component specifier to decide the level of interaction described by each session.
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