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We propose a behavioural theory to contrast processes described by session type

abstractions. We introduce a notion of typed observational equivalence for a polyadic pi

calculus with matching where the discerning capability of the observer is regulated by

the type checker. In particular, type checking forces contexts to not interfere with a

session shared by two participants. Behaviourally equivalent pi calculus processes exhibit

the same observables in all type checked contexts. To avoid universal quantification, we

rely on a proof technique based on bisimulation over typed labelled semantics. By

establishing the soundness and the completeness of bisimulation semantics with respect

to observational equivalence, we provide a framework to reason about the behaviour of

service-oriented protocols.

1. Introduction

Service oriented computing is emerging as one of the prominent paradigms for distributed
computations. A novelty introduced by the paradigm is the concept of session, which de-
scribes a serie of interactions among web services and clients having a precise structure.
While the session abstraction shares some similarity with other approaches for distributed
computing, as for instance communication protocols, it also introduces advanced features
that need a specific account; one of such capabilities consists in delegating a session to
other threads in order to distribute the load. A protocol based on web services can there-
fore be complex and error-prone; to help software engineers and programmers in avoiding
mistakes, a static analysis based on strong static typing can be e↵ective. Starting from
the seminal works of (Takeuchi, Honda and Kubo 1994; Honda, Vasconcelos and Kubo
1998), which introduced session types for a dialect of pi calculus, several approaches for
a typed analysis of sessions have been developed; see (Dezani-Ciancaglini and de’Liguoro
2009) for a recent overview.

In this paper, we focus on session type abstractions for a polyadic pi calculus with
matching (cf.(Hennessy 2007)), and on reasoning techniques to contrast processes de-
scribed by such abstractions. Our aim is to provide for a method to complement the
typed analysis of processes with a behavioural analysis based on co-inductive techniques.
This can be of help in detecting behavioural errors of web service specifications which
are not detected by the typing system. To illustrate, consider the pi calculus process R
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below willing to describe a service protocol for the exchange of a booking reference:

P
def= shuseri.s(x).if x = ref then P1 else P2

Q
def= s(y).if y = mg then shmgrefi

R
def= P | Q

The channel s does represent a session established among the two threads P and Q.
The thread P sends on the session channel the identifier of an user in order to receive
a confirmation of his booking reference. If the received reference corresponds with the
expected one, the thread continues as P1, otherwise it continues as P2. The thread Q

exhibits a dual behavior, that is it waits on the session channel for the acronym of an
user and it sends on the same channel his booking reference; afterwards it terminates.

The behavior of the session in P is abstracted by the end point type !User.?RefId.end

which depicts one end point of the session, the output part. Here the types !S1.S2 and
?S1.S2 denote respectively send and receive a variable of type S1 and afterwards continue
as type S2, and the type end indicates the end of the session, that is no further use in
input or output of the session channel. The behavior of Q is depicted by the dual end
point type ?User.!RefId.end, which illustrates the input part of the session. The whole
session can be abstracted by means of a type constructor representing the concurrent
behavior of the two end points (Giunti and Vasconcelos 2010):

T
def= (!User.?RefId.end, ?User.!RefId.end) .

The type above describes a dyadic session, that is a session involving two participants.
For the session protocol to be sound, we must therefore enforce that (at most) two
participants can join the session. This can be imposed by means of the type judgement
below, which enforces the session s to be shared at most by the two participants P and Q,
thus establishing an a�ne type discipline for session channels: the type checker rules out
processes that try to interfere with the session.

�, s : T ` R (1)

However, the same assumption assigning to the session s the type T can be used to type
check processes that exhibit behavioural errors. Consider the process P 0 below, which is
obtained by exchanging in P the continuation P1 with Q.

P 0 def= shuseri.s(x).if x = ref then Q else P2

By using the same typing system of (1) we can infer the judgement below that permits
to accept P 0. Our claim is that is that process P 0 is deadlocked, since we believe the type
system to forbid to processes put in parallel with P 0 to interact over the session s, and
in turn to unblock the output over s of P 0.

�0, s : T ` P 0 (2)

Intuitively, the problem that we notice in P 0 is that the two participants of the session
are sequential, rather than concurrent. This could happen due to an ingenuity of the
programmer, or because of mobility of sessions: that is, one or both ends of the session s
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have been delegated to P 0. Conceptually, we note that the type construct (S1, S2) de-
scribes the concurrent behaviour of end points S1 and S2 that, similarly to prefixes of
processes, can be rejoned in a single, sequential thread.

To formally reason on the behaviour of such processes we shall have a notion of equiv-
alence which takes into account the typed knowledge of sessions of the observer. More in
detail, we want to be able to express that process P 0 is deadlocked by establishing the
semantic equivalence of P 0 and the inert process 0 in all admissible contexts:

P 0 ?⇠= 0

Clearly, this equation does not hold for untyped contexts, which can detect the process
on the left by trying to read from the session. A distinguishing parallel process is C 0 def=
s(y).!hyi: such process can synchronize with P 0 and subsequently show a signal ! which is
not observable when C 0 runs in parallel with the inert process. However, the composition
of P 0 and C 0 is rejected by the type system; this holds since the channel s is already used
both in input and output by P 0, and since the a�ne discipline forbids any further use of
the channel. We therefore must regulate the behavior of the observers by enforcing type
checking under adequate assumptions.

Given a type environment � representing the knowledge of the observer, and assum-
ing � to be compatible with some �0 and �00 such that �0 ` P 0 and �00 ` 0, we infer the
following typed equation stating the equivalence (hence indistinguishability) of the two
processes in all contexts type checked by �:

� |= P 0 ⇠= 0

Intuitively, two environments are compatible when a) they do not contain the same end
point of the session and b) they agree on the type of the messages exchanged. These
conditions prevent the context to interfere with the session and in turn to break the
desired equivalences.

Incidentally, we note that the presence of types is necessary in our behavioral theory
because the constructs of pi calculus cannot be used to o↵er adequate protection for ses-
sion abstractions. Indeed, while the previous example can be recovered by defending the
session channel from the interference of the context by means of the restriction operator,
this cannot be done when the session has been delegated by the context. Process P 00

below is obtained by prefixing the process P 0 with an input, so that the channel s is
a place-holder for a session received from the context. As in the previous example, the
behaviour of the continuation should be indistinguishable from the inert process: the
following typed equation formalizes this idea.

�, a : !T.end |= P 00 ⇠= a(s : T ).0 P 00 def= a(s : T ).P 0

However, without type checking of contexts this equation cannot be enforced. An untyped
process can indeed discern P 0 from the inert process by first delegating a session to P 00 and
then by using it, which is forbidden in session-oriented programming. A distinguishing
parallel process is C 00 def= (⌫s0)(ahs0i | s0(y).!hyi) where a, ! 6= s0: we have that C 00

and P 00 do interact giving raise to a signal !, while interaction of C 00 with a(s : T ).0 does
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not permit to observe such signal. Note that since the session channel s0 is generated by
the context, the only way to impose a session-based discipline for its use is by enforcing
type checking.

1.1. Contribution

We introduce an a�ne type discipline for a polyadic pi calculus with matching which is
useful for session-oriented programming. We contrast typed processes by introducing a
notion of contextual behavioural equivalence where the behaviour of contexts is regulated
by the type checker. In particular, admissible contexts cannot break the a�ne discipline
for sessions, that is contexts are allowed to use an end of a session only if such end is not
already exercised by one of the contrasted processes. To avoid universal quantification
over contexts in proving our behavioural equations, we provide for a characterization of
observational equivalence based on typed labelled semantics. By assessing the soundness
and the completeness of bisimulation semantics, we supply a proof technique for obser-
vational equivalence and in turn an e↵ective method to analyze the behavior of processes
described by a session typing system. We show the usefulness of our technique for reason
on the behaviour of programs by establishing liveness errors and security guarantees in
code specifications.

1.2. Plan of the paper

Section 2 introduces a typed polyadic pi calculus with matching and its session-based
type discipline. A behavioral theory for the calculus based on the notion of barbs is
defined in Section 3. In Section 4 we introduce typed bisimulation semantics, and we
prove that bisimilar process do exhibit the same contextual behavior. Completeness of
bisimilarity with respect to observational equivalence is established in Section 5. Section 6
draws some example of the application of our technique. Lastly, in Section 7 we discuss
related work and underline the limitations of our approach.

2. Pi calculus

This section introduces the syntax and the semantics of our typed polyadic pi calculus.
The grammar of types is below.

T ::= (S, S) | S | > Types

T̃ ::= T1, . . . , Tn

, n � 0 Tuple

S ::= ?T̃ .S | !T̃ .S | E End Point

E ::= ?T̃ | !T̃ | end Termination

We let T range over types, and let T̃ indicate a tuple of types. The top type, noted >,
permits to perform a local test for the identity of a variable by means of if-then-else.
We consider channel types of the form (S, S) where S is a type describing the behavior
of a channel end point. An end point type S finishes with a termination type E. A
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type of the form !T̃ .S describes a channel end able to send at most once variables of
type T̃ = T1, . . . , Tn

and to proceed as prescribed by S, following an a�ne discipline.
Similarly, ?T̃ .S describes a channel end able to receive at most once variable of types T̃

and to continue as S. A type of the form ?T̃ could be used in an unrestricted way to
receive variables of types T̃ . Similarly !T̃ is used zero or more times to send variables of
types T̃ . Type end describes a channel end on which no further interaction is possible.
We say that a type T is a session type if it is of the form ?T̃ .S, of the form !T̃ .S, or of
the form (S1, S2) with S1, S2 session types.

End point type duality plays a central role ensuring that communication between the
two ends of a channel proceeds smoothly. Intuitively, the dual of an output end point is
an input end point and the dual of input end point is an output end point. In particular
if S2 is dual of S1, noted S1 = S2, then ?T̃ .S1 is dual of !T̃ .S2. Note that the tuple T̃

expected in input corresponds to the tuple T̃ sent in output.

T1, . . . , Tn

= T 1, . . . , Tn

?T̃ .S =!T̃ .S !T̃ .S =?T̃ .S

?T̃ =!T̃ !T̃ =?T̃ end = end

Not all types are available to the programmer. Namely, the type declarations in the
syntax of processes include only balanced types generated by the sub-syntax below. Non-
balanced types are used in the proof’s derivations by the type system and must be hidden
to the programmer, since they can lead to unsound protocols.

B ::= (C,C) | C | > Balanced Types

B̃ ::= B1, . . . , Bn

, n � 0 Tuple

C ::= ?B̃.C | !B̃.C | D End Point

D ::= ?B̃ | !B̃ | end Termination

The syntax of pi calculus processes is below.

P,Q ::= xhṽi.P | x(ỹ : B̃).P | if x = y then P else Q | (⌫y : B)P | P | Q | !P | 0

We rely on a set of variables, ranged over by a, b, . . . , u, v, . . . x, y, z. We let ṽ indicate
a tuple of variables v1, . . . , vn

, n � 0. We consider synchronous, polyadic output and
input processes, in the forms xhṽi.P and x(ỹ : B̃).P , where we assume each variable v

i

in the tuple ṽ = v1, . . . , vn

to be distinct, and each variable y
i

in the tuple ỹ : B̃ =
y1 : B1, . . . , yn

: B
n

to be distinct and to be decorated with the balanced type B
i

. The
matching process if x = y then P else Q allows for comparison of variables. The restricted
process (⌫y : B)P provides for create a variable y decorated with the balanced type B.
The remaining processes are parallel composition, replication, and inaction. The binders
for the language appear in parentheses: variables ỹ are bound in x(ỹ : B̃).P and variable
y is bound in (⌫y : B)P . Free and bound variables in processes are defined accordingly,
and so is alpha conversion, substitution of variables ỹ by variables ṽ in a process P given
|ỹ| = |ṽ|, denoted P [ṽ/ỹ]. We follow Barendregt’s variable convention, requiring bound
variables to be distinct from each other and from free variables in any mathematical
context. We let (⌫ỹ : B̃)P to abbreviate process (⌫y1 : B1) · · · (⌫y

n

: B
n

)P whenever ỹ =
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Rules for structural congruence

P | Q ⌘ Q | P (P | Q) | R ⌘ P | (Q | R) P | 0 ⌘ P !P ⌘ P |!P
(⌫y : B)P | Q ⌘ (⌫y : B)(P | Q) (⌫y : B)0 ⌘ 0

(⌫y1 : B1)(⌫y2 : B2)P ⌘ (⌫y2 : B2)(⌫y1 : B1)P

Rules for reduction

|ṽ| = |ỹ|

xhṽi.P | x(ỹ : B̃).Q
x

�! P | Q[ṽ/ỹ]
[R-Com]

P

y

�! P

0
B ⇢ B

0

(⌫y : B)P
⌧

�! (⌫y : B

0)P 0

P

µ

�! P

0
µ 6= y

(⌫y : B)P
µ

�! (⌫y : B)P 0
[R-Res-T],[R-Res]

if x = x then P else Q

⌧

�! P

x 6= y

if x = y then P else Q

⌧

�! Q

[R-IfT] [R-IfF]

P

µ

�! P

0

P | Q

µ

�! P

0 | Q

P ⌘ Q Q

µ

�! Q

0
Q

0 ⌘ P

0

P

µ

�! P

0
[R-Par] [R-Struct]

Fig. 1. Pi calculus: Reduction semantics

y1, · · · , y
n

with n � 1, and be a short of process P whenever ỹ is empty. We will avoid
often to write trailing and branching inert processes and abbreviate processes xhṽi.0 and
if x = y then P else0 respectively to xhṽi and to if x = y then P .

Structural congruence is the smallest relation on processes including the rules in Fig-
ure 1. The definition is standard. In the first rule on the second line, scope extrusion
allows the scope of x to encompass Q; due to variable convention, variable x bound in
(⌫y : B)P cannot be free in Q. The reduction is the smallest relation

µ�! on processes
including the rules in Figure 1. To represent the evolution of types associated to re-
stricted variables, we record the variable x on the arrow and let µ range over the internal
transition ⌧ and variables x, y, z. This is only for convenience, and has no impact on the
behavioral theory (cf. (Kobayashi, Pierce and Turner 1999)).

The [R-Com] rule permits to communicate variables ṽ from an output prefixed one
xhṽi.P to an input prefixed process x(ỹ : B̃).Q given that ṽ and ỹ have the same arity;
the result is the parallel composition of the continuation processes, where the bound
variables ỹ in the input process are replaced by the variables ṽ. Moreover, we record on
the arrow the channel on which the synchronization takes place; this will be exploited
in rule [R-Res-T] to infer the type of a redex bound by restriction. To this aim, we
introduce a notion of type reduction. A balanced type of the form B = (C,C) evolves to
B0, noted B ⇢ B0, by firing a deterministic step:

(?B̃.C, !B̃.C) ⇢ (C,C) (!B̃.C, ?B̃.C) ⇢ (C,C) (D,D) ⇢ (D,D) D 6= end

Rule [R-Res] applies when the reduction is inferred from a channel not bound by the
restriction. Rule [R-IfT] and [R-IfF] are respectively for matching and mismatching
of variables. Rule [R-Par] permits to compose processes and rule [R-Struct] allows
for rearrangement of processes by using structural congruence. We will often abuse the
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Composition of Types

S1 ⌦ S2 =

(
E S1 = E = S2

(S1, S2) else

(S1, S2)⌦ E =

(
(S1, S2) 9i 2 {1, 2} . S

i

= E

undefined else

E ⌦ (S1, S2) = (S1, S2)⌦ E

(E1, E2)⌦ (E1, E2) = (E1, E2)

T ⌦> = T

>⌦ T = T

Composition of Type Environments

dom(�1 ⌦ �2) = dom(�1) = dom(�2)

(�1 ⌦ �2)(x) =

(
�1(x)⌦ �2(x) if (�1(x)⌦ �2(x)) #
undefined else

Fig. 2. Composition of types and of type environments

notation and write P ! P 0 to indicate that there is µ such that P
µ�! P 0. Similarly, we

write P ) P 0 to indicate that a) P ! · · ·! P 0 or that b) P 0 = P .

Type system Type environments �,� are a possibly empty map from variables to
types. In an environment �, x : T we assume that x does not occur in �; we also assume
the variable bindings in � to be unordered. We let the predicate term be true of a) the
empty environment, as well as of b) environment �, x : T whenever term(�) and T is a
termination type E, or T is a channel type (E1, E2) with E1, E2 termination types, or T

is the type >.
Types and type environments can be combined; this will be exploited in the typing rule

for parallel processes and in the rules for sending variables. The definition of the partial
composition operation over types, noted ⌦ : Types⇥Types ! Types, is in Figure 2. We use
infix notation an write T1⌦T2 to indicate the application⌦(T1, T2), and let T̃⌦T̃ 0 indicate
the applications T1⌦T 0

1, . . . , Tn

⌦T 0
n

whenever T̃ = T1, . . . , Tn

, and T̃ 0 = T 0
1, . . . , T

0
n

with
n � 1, and let T̃ ⌦ T̃ 0 be null when n = 0. Whenever the composition of T1 and T2 is
defined we write (T1⌦T2) #. The operator ⌦ is extended point-wise to type environments
with equal domain. We let �1⌦�2 be defined, noted (�1⌦�2) #, whenever for all entries
x 2 dom(�1) we have (�1(x)⌦ �2(x)) #.

Essentially, the definition in Figure 2 says that we can spawn the use of termination
types and of the top type in an unbounded manner. To illustrate, suppose that type
(?T̃ .S, end) describes the local use of a variable x in process P1, and that x is locally
used at type end in process P2. Then if we consider the global use of x in P1, P2, that is
the use of x in the parallel process P1 | P2, we shall join the two types by using the ⌦
operator, which eventually leads to the type (?T̃ .S, end). Another example is when the
session types ?T̃ .S1 and !T̃ .S2 describe the use of x respectively in processes P1 and P2.
Then the global use of x in P1 | P2 is described by the composition of the two session
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�(v) = E

i

or �(v) = (E1, E2) and i 2 {1, 2}
� ` v : E

i

[T-VarT]

�(x) = T1 �(y) = T2 (T1 ⌦ T2) # � ` P � ` Q

� ` if x = y then P else Q

[T-If]

� ` 0
�1 ` P1 �2 ` P2 (�1 ⌦ �2) #

�1 ⌦ �2 ` P1 | P2
[T-Inact],[T-Par]

� ` P term(�)
� `!P

�
,

x : B ` P

� ` (⌫x : B)P
[T-Repl] [T-Res]

�, x : S, ỹ : B̃ ` P

�, x : ?B̃.S ` x(ỹ : B̃).P

�, x : (S, S

0), ỹ : B̃ ` P

�, x : (?B̃.S, S

0) ` x(ỹ : B̃).P
[T-In],[T-In-L]

� ` x : ?B̃ �, ỹ : B̃ ` P

� ` x(ỹ : B̃).P
[T-InT]

�, ṽ : T̃

j

, x : S ` P (T̃1 ⌦ T̃2) # (⇤)
�, ṽ : T̃1 ⌦ T̃2, x : !T̃

i

.S ` xhṽi.P
[T-Out]

�, ṽ : T̃

j

, x : (S, S

0) ` P (T̃1 ⌦ T̃2) # (⇤)
�, ṽ : T̃1 ⌦ T̃2, x : (!T̃

i

.S, S

0) ` xhṽi.P
[T-Out-L]

� ` x : !T̃
i

�, ṽ : T̃

j

` P (T̃1 ⌦ T̃2) # (⇤)
�, ṽ : T̃1 ⌦ T̃2 ` xhṽi.P

[T-OutT]

(⇤) i 2 {1, 2}, j = i + 1(mod 2)

Fig. 3. Type system

types which leads to the channel type (?T̃ .S1, !T̃ .S2). This case illustrates indeed the
essence of our session-based type discipline. On contrast, types (?T̃ .S1, !T̃ .S2) and !T̃ .S

cannot be composed. Intuitively, we cannot permit these two local uses of a type to be
joined together since this would break the a�ne type discipline for sessions, which says
that each end point of a session must be used at most once.

The typing system in Figure 3 is inspired by the linear type system for pi calculus
without matching of (Giunti and Vasconcelos 2010). Di↵erently from that paper, ses-
sion types follow here an a�ne discipline. This permits a more compact and elegant
formulation of our theory. Moreover, a�ne types permit to accept matching processes
which do not exhibit the same behaviour in both branches, as for instance the process
if x = y then P else0. Besides this, the same results would apply for a linear type system,
while the definition of typed equivalent processes, which we will introduce in the next
section, would be involved.

Rule [T-VarT] is to type a channel with a termination type, and is used in rules
[T-InT] and [T-OutT] respectively to type input and output processes. The rule says
that we can project termination types, and end points of termination channel types.
Note that we do not have an analogous rule for session types, for which we inspect the
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shape of the context. Rule [T-If] permits to type an if-then-else process which compares
the identity of two variables. The types of the variables must be composable; this is to
preserve the a�ne discipline of sessions, so that a process cannot use a session twice
whenever the two contrasted variables are identical. Rule [T-Par] permits to type check
two processes put in parallel such that the composition of the two respective type en-
vironments is defined. As introduced, the use of the ⌦ operator enforces that the local
behaviour of processes can be joined together while preserving the a�ne invariant, so
that we cannot have two processes using the same end of a session. In the replication
rule, [T-Repl], we require the environment to be terminated, so that the process under
replication could not contain free sessions. The rule for restriction [T-Res] permits to
type a fresh variable having a balanced type.

For input we have three rules [T-In],[T-In-L], and [T-InT]; [T-In] and [T-In-L] are
used whenever the input channel is a session, and [T-InT] is performed otherwise. We
avoid to indicate rule [T-In-R] which is the analogous of [T-In-L] but that the end
point of the session is on the right. Rule [T-In-L] permits to type an input channel x

by using the end point type S on the left of a type (S, S0). If x is typed with ?B̃.S, we
know that the bound variables ỹ are of type B̃, and we type check P under the extra
assumption ỹ : B̃. Equally important is the fact that the continuation uses channel x at
continuation type (S, S0), that is, process x(ỹ : B̃).P uses channel x at type (?B̃.S, S0)
whereas P may use the same channel this time at type (S, S0). Rule [T-In] permits to
type an input x described by a session type S by following the same mechanism: the
continuation uses channel x at continuation type S while x(ỹ : B̃).P uses channel x at
type ?B̃.S. On contrast, rule [T-InT] permits to type process x(ỹ : B̃).P given that the
judgement � ` x : ?B̃ can be inferred by using [T-VarT], and that the continuation P

is typed by using the same context � extended with the variables ỹ at types B̃.
Then three rules for typing an output follow. Symmetrically, we have three rules for

typing a session, [T-Out], [T-Out-L], and one rule for typing an output channel de-
scribed by a termination type, [T-OutT]. Again, we avoid to indicate rule [T-Out-R]
which is the analogous of [T-Out-L] but that the end point of the session is on the right.
In the typing rules for output we account for both sending variables having a termination
type and for sending variables having a session type, which means delegating one or both
ends of a session. To illustrate the delegation mechanism, which relies on the type com-
position operator ⌦, we start with the rule for typing a channel with a termination type.
Rule [T-OutT] permits to send variables ṽ at types T̃ on an output channel x given
that we can infer � ` x : !T̃ by using [T-VarT]. If the continuation P is typed with the
environment �, ṽ : T̃ 0, and if the composition of T̃ and T̃ 0 is defined, then we can infer
the judgement �, ṽ : T̃ ⌦ T̃ 0 ` xhṽi.P . So if � ` x : !(S1, S2) with S1, S2 session types,
then the continuation P must be typed with �, v : >, i.e. the session channel cannot be
used in input or output. The indexes i, j in the formulation of the rule permit to switch
types on the left and of the right of the composition. Rule [T-Out-L] permits to send
variables ṽ at types T̃1 on an output channel x having the session type (!T̃1.S, S0). The
continuation must be typed with an environment which uses channel x at type (S, S0),
and which uses the variables at types T̃2, provided that (T̃1 ⌦ T̃2) #. This will permit
us to infer the judgement �, ṽ : T̃1 ⌦ T̃2, x : (!T̃1.S, S0) ` xhṽi.P . Similarly, given x hav-
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ing the session type (!T̃2.S, S0), and the continuation being typed by �, x : (S, S0), ṽ : T̃1,
the rule permits to infer �, ṽ : T̃1 ⌦ T̃2, x : (!T̃2.S, S0) ` xhṽi.P . This is the reason for
the indexes in the three output rules (cf.(⇤)). Rule [T-Out] is to send variables ṽ at
types T̃

i

on an output channel x having the session type !T̃
i

.S. The continuation is typed
with an environment which uses channel x at type S, and which uses the variables at
types T̃

j

, given that T̃
i

⌦ T̃
j

is defined for i = 1, 2 and j = i + 1(mod 2), following the
same mechanism described above. If this is the case, then we can infer the jugdement
�, ṽ : T̃1 ⌦ T̃2, x : !T̃

i

.S ` xhṽi.P .

Example 2.1. We show how we can type services using a protocol relying on a database
of malicious sessions that o↵ers operations to add and to check for untrusted channels;
the database runs in parallel with the web service. Untrusted channels are stored in a
set implemented as a pi calculus process and are typed with >. By providing for channel
matching, we can implement a process if y 2 set then P else Q that continues as P if channel
y is stored in the set of untrusted channels, and continues as Q otherwise. We omit all
details and refer to (Giunti et al. 2009) for an implementation of such protocol. What is
interesting for our purposes is to show how we can control the behaviour of services using
the database by using the typing discipline introduced in this section. More in detail,
services may query the database for the trust of a session by sending the session identifier
at type top without being obliged to delegate the session. The code below illustrates such
core mechanism; we let d be a communication channel with the database carrying two
values: the session identifier s, and an address a to acknowledge the trust of the session.

check s in P
def= (⌫a : B)dhs, ai.a(x : Ack).if x = ok then P

B
def= (?Ack.end, !Ack.end)

Let � be an environment such that �(d) =!T 0 with T 0 = {>, !Ack.end}, and such that
�(ok) = >. The delegation mechanism provides for sending one end of the channel for the
ack to the database (the output part), while the other end (the input part) is retained by
the process in order to receive the reply from the database. Now by assuming that there
is some T such that �, s : T, a : end, x : Ack ` P , we can type the process above with the
following derivation.

�, s : T, a : end, x : Ack ` P

([T-If])
�, s : T, a : end, x : Ack ` if x = ok then P

([T-In])
�, s : T, a : ?Ack.end ` a(x : Ack).if x = ok then P

([T-OutT])
�, s : T ⌦>, a : ?Ack.end⌦!Ack.end ` dhs, ai.a(x : Ack).if x = ok then P

([T-Res])
�, s : T ` check s in P

Example 2.2. We show that process P 0 of the introduction, which we claim to be
deadlocked, is well-typed. Let the types I, U be a short respectively for RefId and User,
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and define

P 0 def= shui.s(x : I).if x = r then Q else P2

Q
def= s(y : U).if y = g then shmi.0

T
def= (!U.?I.end, ?U.!I.end)

Take an environment � such that �(g) = > and �(r) = >, i.e. only the identities of the
user g and of the reference r are known to �, and assume that we have the judgement
(⇤) �, s : (?U.!I.end, end), x : I, u : >, m : I ` P2, which we will use to type the else branch
of process P 0. We have the following derivation.

([T-Inact])
�, s : (end, end), x : I, y : U, u : >, m : > ` 0

([T-Out-L])
�, s : (!I.end, end), x : I, y : U, u : >, m : I ` shmi.0

([T-If])
�, s : (!I.end, end), x : I, y : U, u : >, m : I ` if y = g then shmi.0

([T-In-L])
�, s : (?U.!I.end, end), x : I, u : >, m : I ` Q (⇤)

([T-If])
�, s : (?U.!I.end, end), x : I, u : >, m : I ` if x = r then Q else P2

([T-In-R])
�, s : (?U.!I.end, ?I.end), u : >, m : I ` s(x : I).if x = r then Q else P2

([T-Out-R])
�, s : T, u : U, m : I ` P

0

The first lemma illustrates the properties of the type composition operator.

Lemma 2.3. The following hold.

1 The composition operation ⌦ is associative, has type > as identity, and the idempo-
tent elements E, (E1, E2);

2 For all types T1, T2, we have (T1 ⌦ T2) # i↵ (T2 ⌦ T1) #.
Composition of types is not commutative; in fact, we have S1 ⌦ S2 = (S1, S2) while

S2 ⌦ S1 = (S2, S1). However, the order of two end points in a type can be exchanged
while preserving the typings, as stated in the next lemma. The proof of this result is
by induction on the length of the inference for the judgement, and crucially relies on
typing for termination channels ([T-VarT]), on symmetric rules for input ([T-In-L] and
[T-In-R]) and output ([T-Out-L] and [T-Out-R]), and on the delegation mechanism
in the rules for output, which permit to switch the order of compositions.

Lemma 2.4 (Exchange). If �, x : (S1, S2) ` P then �, x : (S2, S1) ` P .

The next lemma says that we can weaken judgements by adding typings for channel
types and for end point types. Note that add a session typing does preserve the a�ne
type discipline. The proof is by induction on the structure of the process.

Lemma 2.5 (Weakening). The following hold.

1 If � ` P then �, x : T ` P ;
2 If �, x : S ` P then �, x : (S, S0) ` P .

The next lemma says that we can strengthen judgements by removing typings, when-
ever the variable for the typing does not occur in the free variables of the process. The
proof is by induction on the structure of the process.
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Lemma 2.6 (Strengthening). If �, x : T ` P and x 62 fv(P ) then � ` P .

Reduction preserves typability of balanced environments. An environment � is bal-
anced if it is a) the empty environment or b) a map from variables to balanced types. To
understand why subject reduction does not hold for unbalanced contexts, consider the
process P

def= a(x : B).(xhzi | x(y).P 0) where B
def= (?C.end, !C.end). Now if we let P

to interact with Q
def= (⌫b : B)ahbi.bhwi, then the a�ne discipline for sessions is broken,

since the synchronization of P | Q eventually leads to a redex having two outputs over b.
The problem is that in the type T

def= (?B, !(?C.end)), which describes the use of a in
P | Q, the type expected in input from a by P is di↵erent to the one sent in output
over a by Q, i.e. T is unbalanced.

As usual, preservation of typability relies on a substitution Lemma. The proof of this
result is similar to that of (Giunti and Vasconcelos 2010) but easier; see the appendix for
more details. This is because the composition of two end point types is always defined
whereas the corresponding split operation of (Giunti and Vasconcelos 2010) does not
allow combination of unequal termination types.

Lemma 2.7 (Substitution). Let �, ṽ : T̃ , x̃ : T̃ 0 ` P and assume |ṽ| = |x̃|. If (T̃ ⌦ T̃ 0) #
then �, ṽ : T̃ ⌦ T̃ 0 ` P [ṽ/x̃].

The next lemma is the core of subject reduction; for its proof we refer to the appendix.
We let �, x : T

x⇢ �, x : T 0 whenever T ⇢ T 0.

Lemma 2.8. Let � ` P with � balanced and assume P
µ�! P 0.

i) If µ = x then �0 ` P 0 with �
x⇢ �0;

ii) If µ = ⌧ then � ` P 0.

By using Lemma 2.8, we obtain the main result of this section.

Theorem 2.9 (Subject Reduction). If � ` P with � balanced and P ! P 0, then
�0 ` P 0 with �0 balanced.

3. Typed behavioral theory

In this section we introduce a typed behavioral theory for pi calculus processes. We
contrast typed processes with respect to contexts which behavior is regulated by type
checking under adequate assumptions. We represent the knowledge of the observer on
channels by means of a type environment. In particular, the type environment for the
observer is allowed to contain a end of a session only if this is not exercised by one of the
compared processes. The following definition formalizes this intuition.

Definition 3.1 (Compatibility). A type environment � is compatible with �, noted
� ⇣ �, whenever a) (�⌦ �) # and b) �⌦ � is balanced.

Incidentally, we note that � ⇣ � if and only if � ⇣ �.
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We are interested in relating processes type checked by type environments that are
compatible with the type environment for the observer. The definition below introduces
the framework of the behavioural theory.

Definition 3.2 (Type-indexed relations). A type-indexed relation R is a family
of binary relations over processes indexed by type environments. We let � |= P RQ

whenever there exist �1,�2 such that:

— �1 ` P and �2 ` Q;
— � ⇣ �1 and � ⇣ �2.

In the definition above, the index corresponds to the type environment for the observer,
since it possible to notice observables of processes only having the appropriate typing
assumptions. The definition below formalizes this concept. Given a balanced type envi-
ronment � such that � ` x : ?Ũ .S or � ` x : ?Ũ , we let �?(x) be defined, noted �?(x) #,
and equal to Ũ : �?(x) = Ũ . Similarly whenever we have the judgment � ` x : !Ũ .S or
the judgment � ` x : !Ũ we have �!(x) # and �!(x) = Ũ . Notice that the balanced
hypothesis ensures that if �(x) = (B1, B2) then �?(x) = �!(x).

The observables of our theory are defined in terms of barbs (Sangiorgi and Walker
2001). Whenever �!(x) #, an output barb on x can be observed if the process is struc-
turally equivalent to a context containing the (free) output x. Conversely, whenever
�?(x) # an input barb on x can be observed if the process contains a (free) input over x.

Definition 3.3 (Barbs). Let � be a type environment and P be a process. We let:

— � |= P #
x! whenever P ⌘ (⌫x̃ : Ã)(xhṽi.P | Q) and x 62 x̃ and �?(x) #;

— � |= P #
x? whenever P ⌘ (⌫x̃ : Ã)(x(ỹ : Ã0).P | Q) and x 62 x̃ and �!(x) #.

Weak barbs are defined in terms of weak reductions (cf. Section 2). For each observable
O 2 {x?, x!} we let � |= P +O whenever P ) P 0 and � |= P 0 #O. We write � 6|= P +O
to indicate that does not exist P 0 such that P ) P 0 and � |= P 0 #O.

Definition 3.4 (Barb preservation). A type-indexed relation R is barb preserving
whenever � |= P RQ and

— � |= P #
x! implies � |= Q+

x!

— � |= P #
x? implies � |= Q+

x?.

Our behavioral theory ignores reductions of processes, since we assume such to be
internal steps invisible to the observer.

Definition 3.5 (Reduction closure). A type-indexed relation R is reduction-closed
if � |= P RQ and P ! P 0 implies that Q ) Q0 and �0 |= P 0 RQ0.

A crucial point is that related processes must maintain their behavior in all contexts
type checked by the observing environment.

Definition 3.6 (Contextuality). A type-indexed relation R is contextual if

— �⌦�
R

|= P RQ and �
R

` R implies � |= P | R R Q | R;
— � |= P RQ implies �, x : T |= P RQ;
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— �, x : T |= P RQ implies � |= (⌫x : A)P R (⌫x : A)Q.

We are ready to introduce the touchstone equivalence of our calculus.

Definition 3.7 (Typed behavioral equivalence). Typed behavioral equivalence,
noted ⇠=, is the largest symmetric type-indexed relation which is barb preserving, re-
duction closed and contextual.

Whenever does not exist R such that � |= P RQ and R ✓⇠= we write � 6|= P ⇠= Q.

Example 3.8. We show why our notion of contextuality, and in particular the clause
inherent the immersion of parallel processes, relies on type checking under assumptions
compatible with those used to type the related processes. Consider the process P 00 def=
a(s : T ).P 0 of the introduction, where:

P 0 def= shui.s(x : I).if x = r then Q else P2 Q
def= s(y : U).if y = g then shmi.0

�, a : ?T.end ` P 00 T
def= (!U.?I.end, ?U.!I.end)

Our aim is to relate P 00 and a(s : T ).0 with a type-index � such that � |= P 00 R a(s : T ).0
is contextual. By definition, � needs to be compatible with �, a : ?T.end and �0 such that
�0 ` a(s : T ).0; we avoid to analyze the last requirement, which does not add useful
informations. In particular, the first requirement imposes that � can use only the output
capability of a to send values at type T : �(a) =!T.end or �(a) = >. Now we can
understand how the observer’s environment � can control the behaviour of contexts,
and eventually rule out processes that cannot be composed with P 00 and a(s : T ).0. Take
the context of the introduction: C 00 def= (⌫s0 : T )(ahs0i | s0(y).!hyi) where a, ! 6= s0,
and assume that �?(!) #. We can easily see that C 00 is not a valid context for R , since
there is H such that P 00 | C 00 ) H and � |= H #

!!, while � 6|= (a(s : T ).0 | C 00)+
!!. In

fact � does not accept this context: � 6` C 00. In the non trivial case, that is �(a) 6= >,
this holds since C 00 both delegates the channel s0 at type �!(a) = T , and use s0 at the
input type ?U.!I.end: that is, rule [T-Par] cannot be used to accept the parallel process
ahs0i | s0(y).!hyi, because the composition of type T and type ?U.!I.end is undefined.

4. Bisimulation semantics

In this section we provide for a co-inductive proof technique for typed behavioral equiva-
lence based on bisimulation. We define semantics over typed configurations which depict
the interaction among the process and the context represented by a type environment.

Definition 4.1. A pair � / P is a configuration whenever there exist � such that

— � ` P ;
— � ⇣ �.

The semantics of configurations are expressed in Figure 4 in terms of a labelled tran-
sition system. The labels are the following:

↵ ::= (ỹ : T̃ ) x(ṽ) | (ỹ)xhṽi | µ
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|ỹ| = |ṽ| (⇤)

�, ṽ : B̃1 ⌦ B̃2, x : !B̃
i

.C / x(ỹ : B̃

i

).P
x(ṽ)
���! �, ṽ : B̃

j

, x : C / P [ṽ/ỹ]

[L-In]

�, ṽ : B̃1, x : ?B̃2.C / xhṽi.P
xhṽi
���! �, ṽ : B̃1 ⌦ B̃2, x : C / P

[L-Out]

|ỹ| = |ṽ| (⇤)

�, ṽ : B̃1 ⌦ B̃2, x : (!B̃
i

.C, C

0) / x(ỹ : B̃

i

).P
x(ṽ)
���! �, ṽ : B̃

j

, x : (C, C

0) / P [ṽ/ỹ]

[L-In-L]

�, ṽ : B̃1, x : (?B̃2.C, C

0) / xhṽi.P
xhṽi
���! �, ṽ : B̃1 ⌦ B̃2, x : (C, C

0) / P

[L-Out-L]

�, ṽ : B̃1 ⌦ B̃2 ` x : !B̃
i

|ỹ| = |ṽ| (⇤)

�, ṽ : B̃1 ⌦ B̃2 / x(ỹ : B̃

i

).P
x(ṽ)
���! �, ṽ : B̃

j

/ P [ṽ/ỹ]

[L-InT]

�, ṽ : B̃1 ` x : ?B̃2

�, ṽ : B̃1 / xhṽi.P
xhṽi
���! �, ṽ : B̃1 ⌦ B̃2 / P

[L-OutT]

�, y : B / P

(ỹ:B̃)x(ṽ)
�������! �0

/ P

0
y 62 {x, ỹ}

� / P

(y : B,ỹ : B̃) x(ṽ)
������������! �0

/ P

0

�, y : > / P

(ỹ)xhṽi
�����! �0

/ P

0

� / (⌫y : B)P
(y,ỹ) xhṽi
�������! �0

/ P

0

[L-Weak],[L-Open]

P

µ

�! P

0

� / P

µ

�! � / P

0

� / P

↵

�! �0
/ P

0 bv(↵) \ fv(Q) = ;

� / P | Q

↵

�! �0
/ P

0 | Q

[L-Red],[L-Par]

�, x : > / P

x

�! �, x : > / P

0
B ⇢ B

0

� / (⌫x : B)P
⌧

�! � / (⌫x : B

0)P 0
[L-Res-T]

�, x : > / P

↵

�! �0
, x : > / P

0
x 62 var(↵)

� / (⌫x : B)P
↵

�! �0
/ (⌫x : B)P 0

[L-Res]

� / P

↵

�! �0
/ P

0

�/!P
↵

�! �0
/ P

0 |!P
[L-Repl]

(⇤) i 2 {1, 2}, j = i + 1(mod 2)

Fig. 4. Typed labelled semantics

The first label denotes possible fresh input of variables ṽ on a variable x; we assume
ỹ ✓ ṽ. Notice that the types for the variables are indicated. The second label denotes an
output of possibly fresh variables ṽ on a variable x; we let ỹ ✓ ṽ. The last label, µ, which
ranges over ⌧ and variables x, y, z as in Section 2, denotes an internal transition which
is not observable by the typed observer. We let the bound variables of ↵, noted bv(↵),
be the set {ỹ} whenever ↵ = (ỹ : T̃ ) x(ṽ) or ↵ = (ỹ) xhṽi, and the empty set otherwise.
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The variables of ↵, noted var(↵), are all variables occurring in ↵. The free variables of
↵, noted fv(↵), are the set var(↵)\bv(↵).

Symmetrically to the type system of Figure 3, in the typed transitions of Figure 4
we have three rules for input, [L-In],[L-In-L], and [L-InT], and three rules for output,
[L-Out],[L-Out-L], and [L-OutT]. Rule [L-In] and [L-Out] apply when the type for
the input/output channel of the observer’s environment is a session type of the form S,
while rules [L-In-L] and [L-Out-L] apply when such type has the form (S, S0) with S a
session type. We avoid to indicate the symmetric right rules of [L-In-L] and [L-Out-L]
that apply when the observer’s type for the channel has the form (S0, S) with S a session
type. Then we have rules [L-InT] and [L-OutT], which apply when the type for the
channel is a termination type. In rule [L-In], an environment which knows x at session
type !B̃

i

.C, i 2 {1, 2}, and possess variables ṽ at types B̃1⌦ B̃2, interacts with a process
waiting for input on x by sending to it the variables ṽ. The result of the interaction is that
the variables ṽ are assigned to the formal parameters of the input in the continuation, and
that the environment for the redex looses the capabilities B̃

i

over ṽ and unrolls the type
for x to C. For instance if the initial environment is �, v : (?B.end, !B.end), x : !(?B.end).C
then the environment for the redex is �, v : !B.end, x : C. Rule [L-In-L] performs the same
behaviour when x is known at type (!B̃

i

.C, C 0). Rule [L-InT] is similar to rule [L-In]
and applies when the input channel x of the process is known by the environment at
termination type !B̃

i

. Note that in the environment of the redex the type for x does
not change, since it is terminated. In rule [L-Out], an environment which knows x at
session type ?B̃2.C interacts with a process sending variables ṽ over x. The result of
the interaction is that the process progresses to the continuation while the environment
acquires the variables ṽ at types B̃2 and unrolls the type for x to C. For instance if the
initial environment is �, v : !B.end, x : ?(?B.end).C then the environment for the redex is
�, v : (!B.end, ?B.end), x : C. Note that the balanced hypothesis makes sure the types for
the variables ṽ in the redex environment to be defined. Rule [L-Out-L] is analogous,
while in rule [L-OutT] the environment of the redex assigns to the output channel of
the process the same termination type of the hypothesis. In rule [L-Weak] the context
dynamically creates new variables and it sends them to the receiving process. Scope
extrusion is performed by rule [L-Open]. Rule [L-Red] says that reduction defined in
Figure 1 is invisible to the context. The two rules for restriction [L-Res-T] and [L-Res]
are the counterparts respectively of rules [R-Res-T] and [R-Res] in Figure 3.

The following result establishes that the rules in Figure 3 do represent a transition
system. The proof is in the appendix.

Proposition 4.2. Let �/P be a configuration and assume that �/P
↵�! �0 /P 0. Then

�0 / P 0 is a configuration.

We define bisimilarity over the typed labelled transition system.

Definition 4.3 (Bisimilarity). A symmetric relation R over configurations is a bisim-
ulation if whenever (� / P )R (� / Q) and � / P

↵�! �0 / P 0 then � / Q
↵̂=) �0 / Q0 and

(�0 / P 0)R (�0 / Q0), where µ̂ is the empty string and ↵̂ = ↵ otherwise. Bisimilarity,
noted ⇡, is the largest bisimulation. We write � |= P ⇡ Q as a short for � / P ⇡ � / Q.
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The first lemma describes the shape of a process executing a typed action and of
the typed observer. The proof is a simple argument by induction on the length of the
reference; we omit all the details and refer to (Hennessy 2007).

Lemma 4.4. The following hold.

1 If �/P
(ỹ : T̃ ) x(ṽ)
��������! �0/P 0 then �!(x) #, P ⌘ (⌫x̃ : Ã)(x(z̃ : B̃).Q1 | Q2) with |x̃ = ṽ—

and x 62 x̃, and P 0 ⌘ (⌫x̃ : Ã)(Q1[ṽ/z̃] | Q2);

2 If � / P
(ỹ)xhṽi
�����! �0 / P 0 then �?(x) #, P ⌘ (⌫ỹ : Ã, z̃ : B̃)(xhṽi.Q1 | Q2) with x 62 z̃,

and P 0 ⌘ (⌫z̃ : Ã)(Q1 | Q2).

The first proposition establishes the correspondence among the µ-actions of Figure 1
and the µ-actions of Figure 4.

Proposition 4.5. P
µ�! P 0 if and only if � / P

µ�! � / P 0.

Proof. The left direction is immediate since from P
µ�! P 0 and [L-Red] we infer � /

P
µ�! � / P 0. For the opposite direction, we proceed by induction on the length of the

reference. In case [L-Red] from �/P
µ�! �/P 0 we infer P

µ�! P 0 and we have done. In
case [L-Par] we have � / P | Q

µ�! � / P 0 | Q inferred from � / P
µ�! �0 / P 0. By I.H.

we have P
µ�! P 0. We apply [R-Par] and infer P | Q

µ�! P 0 | Q0. In case [L-Res-T]
we have � / (⌫x : T )P

⌧�! � / (⌫x : T )P 0 inferred from � / P
x�! � / P 0 and T ⇢ T 0.

By I.H. we have P
x�! P 0. We apply [R-Res-T] and infer (⌫x : T )P

⌧�! (⌫x : T 0)P 0.
Case [L-Res] is analogous. In case [L-Repl] we have �/!P

µ�! � / P 0 |!P inferred from
�/P

µ�! �/P 0. By I.H. we have P
µ�! P 0. We apply [R-Par] and infer P |!P µ�! P 0 |!P .

An application of [R-Struct] with !P ⌘ P |!P give us the desired result, !P
µ�! P 0 |!P .

In the following, we establish the contextuality of ⇡. We start by proving that ⇡ is
preserved by restriction. We need a preparatory lemma, which says that the type > is
less informative than the other types. The proof is in the appendix.

Lemma 4.6. If �, x : T |= P ⇡ Q then �, x : > |= P ⇡ Q.

Proposition 4.7 (Closure under restriction). If �, x : T |= P ⇡ Q then � |=
(⌫x : A)P ⇡ (⌫x : B)Q.

Proof. Let � |= M RN whenever a) M = (⌫y : A)P and N = (⌫y : B)Q and �,

y : > |= P ⇡ Q or b) � |= M ⇡ N . We proceed by co-induction and show that R
is contained in ⇡, hence proving that �, x : > |= P ⇡ Q implies � |= (⌫x : A)P ⇡
(⌫x : B)Q. The result then follows by Lemma 4.6. It is easy to see that R is a type-
indexed relation. To see that R is a bisimulation, we show case (a); case (b) is ob-
tained directly by exploiting the properties of ⇡. Let � / M

↵�! �0 / P 0 be inferred

by [L-Open] since ↵ = (y, ỹ)xhṽi and �, y : > / P
(ỹ)xhṽi
�����! �0 / P 0. We find Q0 s.t.
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�, y : > / Q =)
(ỹ)xhṽi
�����! =) �0 / Q0 and �0 |= P 0 ⇡ Q0. By applications of [L-Res]

and [L-Open] we infer �/N =)
(y,ỹ)xhṽi
�������! =) �0 /Q0. From �0 |= P 0 RQ0 we obtain

the desired result. Consider case [L-Res-T]. We have � / (⌫y : A)P
⌧�! � / (⌫y : A0)P 0

inferred from �, y : > / P
y�! �, y : > / P 0 and A ⇢ A0. We infer that there is Q0 such

that � / Q
µ1��! · · · µn��! � / Q0 and �, y : > |= P 0 ⇡ Q0. By applications of [L-Res]

and [L-Res-T] we infer � / (⌫y : B)Q =) � / (⌫y : B0)Q0 where B ⇢ · · · ⇢ B0. We
deduce that � |= (⌫y : A0)P 0 R (⌫y : B0)Q0, as required. Case [L-Res] is similar. We have
that � / (⌫y : A)P

↵�! �0 / (⌫y : A)P 0 is inferred from �, y : > /P
↵�! �0, y : > /P 0 with

y 62 var(↵). We infer that there is Q0 such that �/Q
↵=) �0 /Q0 and �, y : > |= P 0 ⇡ Q0.

By applications of [L-Res] and [L-Res-T] we obtain � / (⌫y : B)Q ↵=) � / (⌫y : B0)Q0

with B ⇢ · · · ⇢ B0. We conclude that � |= (⌫y : A)P 0 R (⌫y : B0)Q0.

To prove that bisimulation is closed under creation of fresh variables, we need the
following lemma. The proof is by induction on the length of the reference (cf. (Bugliesi
and Giunti 2005)).

Lemma 4.8. The following hold.

1 If �, y : T / P
↵�! �0, y : T / P 0 and y 62 fv(P ) then � / P

↵�! �0 / P 0.
2 If � / P

↵�! �0 / P 0 and y is fresh to �0 then �, y : T / P
↵�! �0, y : T / P 0.

Proposition 4.9 (Closure under new variables). If � |= P ⇡ Q then �, x : T |=
P ⇡ Q.

Proof. Let � |= P RQ whenever a) � = �1, y : T and �1 |= P ⇡ Q or b) � |= P ⇡ Q.
We show that R is a bisimulation. First, we note that R is a type-indexed relation; this
result is straightforward obtained by the bisimilarity hypothesis. The interesting case
is (a); (b) follows directly by co-induction. First notice that in case (a) we know that
y 62 fv(P,Q) since from �1 |= P ⇡ Q we infer �1 ` P and � ` Q with dom(�1) =
dom(�1) = dom(�2). Assume � / P

↵�! �0 / P 0. If ↵ = (ỹ : T̃ )x(ṽ) with y 62 ṽ, or
↵ = (ỹ)xhṽi, or ↵ = µ then we infer y 62 fv(↵). From this we deduce that �0 = �2, y : T

for some �2. We apply Lemma 4.8(i) and infer �1 / P
↵�! �2 / P 0. From �1 |= P ⇡ Q

we deduce that there is Q0 such that �1 / Q
↵=) �2 / Q0 and �2 |= P 0 ⇡ Q0. We apply

Lemma 4.8(ii) and infer the following reductions: �1, y : T / Q
↵=) �2, y : T / Q0. From

a) we infer �0 |= P 0 RQ0, as required. Otherwise, consider the case ↵ = (ỹ : T̃ )x(ṽ) with
y 2 ṽ. We apply [L-Weak] and infer �1 / P

↵�! �0 / P 0. From �1 |= P ⇡ Q we deduce
that �1 /Q

↵=) �0 /Q0 and �0 |= P 0 ⇡ Q0. From b) we infer �0 |= P 0 RQ0, as requested.

Proposition 4.10 (Closure under composition). If �⌦�
R

|= P ⇡ Q and �
R

` R

then � |= P | R ⇡ Q | R.

Proof. Let � |= (⌫x̃ : Ã)(P | R) R (⌫ỹ : B̃)(Q | R) whenever �, z̃ : >̃ ⌦ �
R

, z̃ :
C̃ |= P ⇡ Q with z̃ = x̃ [ ỹ, �

R

, z̃ : C̃ ` R. We show that R is a bisimulation;
the statement of the proposition then follows by letting z̃ be the empty tuple. We first
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prove that R is a type-indexed relation. In the following, we show that each of the related
processes is typed by an environment compatible with the type-index. By the bisimilarity
hypothesis we infer that there are �1 ` P,�2 ` Q such that �, z̃ : >̃⌦�

R

, z̃ : C̃ ⇣ �1 and
�, z̃ : >̃⌦�

R

, z̃ : C̃ ⇣ �2. This means that �
R

, z̃ : C̃⌦�1 and �
R

, z̃ : C̃⌦�2 are defined.
From �

R

, z̃ : C̃ ` R, and from the rule for typing for parallel processes, [T-Par], we
obtain that �

R

, z̃ : C̃⌦�1 ` P | R and �
R

, z̃ : C̃⌦�2 ` Q | R. From multiple applications
of the rule for restriction, [T-Res], we infer �

R

, ã : Ã0 ⌦ �1 \ x̃ ` (⌫x̃ : Ã)(P | R) and
�

R

, b̃ : B̃0 ⌦ �2 \ ỹ ` (⌫ỹ : B̃)(Q | R) where ã [ x̃ = ỹ, and b̃ [ ỹ = x̃; we let � \ x̃ be
the union of typings y : �(y) such that y 62 x̃. Now we know that ã \ fv(P,R) = ;, and
b̃ \ fv(Q, R) = ;, eventually by alpha-renaming x̃ and ỹ. By strengthening (Lemma 2.6)
we infer �

R

⌦ �1 \ z̃ ` (⌫x̃ : Ã)(P | R) and �
R

⌦ �2 \ z̃ ` (⌫ỹ : B̃)(Q | R). We can now
deduce that � ⇣ �

R

⌦ �1 \ z̃ and � ⇣ �
R

⌦ �2 \ z̃, as required.
To see that R ✓⇡, let � / (⌫x̃ : Ã)(P | R)

↵�! �1 / M . The interesting situation to
analyze is communication among P and R, which arises when ↵ = µ. To tackle the proof,
we mimic the synchronization among processes P and R by letting P to interact with
the type environment �

R

. First, notice that when ↵ = µ we have that �1 = �. In the
following, we show the case whether the synchronization arises from process P sending
variables to R over a free channel x, i.e. ↵ = x. The case whether R sends variables to
P is analogous, while the case ↵ = ⌧ is similar, but simpler. To ease the notation we
avoid type decorations whenever unnecessary for the proof. Without loss of generality,
let (⌫x̃)(P | R)

x�! M be inferred by using [R-Com],[R-Res] and [R-Struct] since
M

def= (⌫x̃, k̃)(P 0 | R0), P ⌘ (⌫p̃, k̃)(xhṽi.P1 | P2), R ⌘ (⌫r̃)(x(ỹ : B̃).R1 | R2), |ṽ| = |ỹ|,
P 0 ⌘ (⌫p̃)(P1 | P2), and R0 ⌘ (⌫r̃)(R1[ṽ/ỹ] | R2).

From the hypothesis �
R

` R, we infer that �?
R

(x) is defined and equal to B̃: �?
R

(x) =
B̃. Let �, z̃ : >̃ ⌦�

R

, z̃ : C̃ = �1. By applications of [L-Res], [L-Par], and [L-Open]

we deduce �1 / P
(k̃)xhṽi
�����! �0 / (⌫p̃)(P1 | P2). From the bisimilarity hypothesis, we find

Q0 such that �1 /Q
(k̃)xhṽi

=====) �0 /Q0 and �0 |= (⌫p̃)(P1 | P2) ⇡ Q0. This means that there

are Q0, Q1 such that �1 / Q =) � / Q0

(k̃)xhṽi
�����! �0 / Q1 =) �0 / Q0. We infer the shape

of Q0 and Q1 (cf. Lemma 4.4): Q0 ⌘ (⌫q̃, k̃)(xhṽi.Q1 | Q2) and Q1 ⌘ (⌫q̃)(Q1 | Q2). By
applications of [L-Res-T],[L-Res],[L-Par] and [L-Red] we infer �/(⌫ỹ)(Q | R) =) �/

N where N ⌘ (⌫ỹ, k̃)(Q0 | R0). To infer that � |= M RN we need to show that R0 is
typed by a suitable environment. This follows by subject reduction (Lemma 2.8): we have
�

R

⌦ �1 \ z̃
x⇢ ⌦ and ⌦ ` M , and �

R

⌦ �2 \ z̃
x⇢ ⌦0 and ⌦0 ` N . From the judgement

above we find �
R

0 such that �
R

0 , z̃ : C̃, k̃ : K̃ ` R0 and �00 ⌦ �
R

0 , z̃ : C̃, k̃ : K̃ = �0 for
some tuple of types K̃ and type environment �00.

Based on these results, we establish the soundness of bisimulation as a proof technique
for observational equivalence.

Proposition 4.11 (Soundness). If � |= P ⇡ Q then � |= P ⇠= Q.

Proof. Let � |= P RQ whenever � |= P ⇡ Q. First, notice that R is a type-indexed
relation since there are �1,�2 such that �1 ` P,�2 ` Q, � ⇣ �1 and � ⇣ �2. We
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show that R is a typed behavioral equivalence, i.e. we prove that R ✓⇠=. To see barb
preservation, assume � |= P #

x!. We have P ⌘ (⌫ỹ : T̃ )(xhṽi.P1 | P2) and x 62 ỹ and
�?(x) #. There are two cases corresponding to ṽ \ ỹ = ; or not. We draw the latter
case, the former is easier. By multiple applications of [L-Res], [L-Open],[L-Par] and
[L-Out], where in the last we exploit the hypothesis �?(x) #, we infer � /P

↵�! �0 /P 0

with ↵ = (z̃) xhṽi with ṽ \ ỹ = z̃. From � |= P ⇡ Q we infer that there is Q0 such
that � / Q

↵=) �0 / Q0 with �0 |= P 0 ⇡ Q0. This means that there is Q1 such that
�/Q =) �/Q1

↵�! =) �0/Q0. We apply Lemma 4.4 and infer that there are variables
ã and types Ã such that Q1 ⌘ (⌫ã : Ã)(xhṽi.R1 | R2) where x 62 ã and z̃ ✓ ã. From
�?(x) # and the results above we infer � |= Q +

x!. Now assume � |= P #
x?. We have

P ⌘ (⌫x̃ : T̃ )(x(ỹ).P1 | P2) and x 62 x̃ and �!(x) #. By multiple applications of [L-Res],
[L-Weak],[L-Par] and [L-In], where in the last we exploit the hypothesis �!(x) #, we
infer � / P

↵�! �0 / P 0 with ↵ = (ỹ : T̃ ) x(ṽ) for types T̃ . From � |= P ⇡ Q we infer
that there is Q0 such that � /Q

↵=) �0 /Q0 with �0 |= P 0 ⇡ Q0. As in the previous case,
by exploting Lemma 4.4 we find a suitable process Q1 such that � / Q =) � / Q1 and
Q1 ⌘ (⌫z̃ : T̃ 0)(x(ỹ).R1 | R2) with x 62 z̃; from this we infer � |= Q+

x?, as required. Next
we show reduction closure. Assume P

µ�! P 0. We apply the left direction of Lemma 4.5
and infer � / P

µ�! � / P 0. From � |= P ⇡ Q we infer that � / Q
µ1��! · · · µn��! � / Q0

with � |= P 0 ⇡ Q0. By applications of the right direction of Lemma 4.5 we infer that
Q

µ1��! · · · µn��! Q0. Since � |= P 0 RQ0, we are done. Lastly, contextuality of R is
assured by Propositions 4.7, 4.9 and 4.10.

5. Completeness

In this section we show that typed behavioral equivalence coincides with bisimulation. As
in (Hennessy 2007; Bugliesi and Giunti 2005) the completeness result relies on the fact
that the observations of processes we make in typed actions in Figure 4 are contextually
valid. The idea is to represent each label with a context, in the following way. Whenever
� = x̃ : T̃ , we let ph�i be a short of phx̃i.0 and (�) be a short of T̃ . Given a type
environment �, we let � after ↵ be defined and equal to �0, if:

� / x(ỹ).0
↵�! �0 / 0 ↵ = (z̃ : B̃) x(ṽ), |ỹ| = |ṽ|

� / xhṽi.0 ↵�! �0 / 0 ↵ = xhṽi
� / (⌫ỹ : B̃)xhṽi.0 ↵�! �0 / 0 ↵ = (ỹ)xhṽi
�0 = � ↵ = µ

Lemma 5.1. For each label ↵ 6= µ and environment � there exists a process C�
↵

and a
name e fresh to � such that:

1 if � / P
↵�! �0 / P 0 then �, e : (?(�0), !(�0)) ` C�

↵

and P | C�
↵

=) (⌫x̃ : T̃ )(P 0 |
eh�0i);

2 if C�
↵

| P =) (⌫x̃ : T̃ )(P 0 | ehṽi) and �, e : (?(�0), !(�0)) ` C�
↵

with �0 = � after ↵

and x̃ = bv(↵) and e 62 x̃, then � / P
↵=) �0 / P 0.
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Proof. For the sake of compactness, we define the contexts for the monadic calculus.
The definition of contexts for the polyadic calculus is a simple but annoying exercise
(cf. (Giunti 2007, Chapter 2)). In the following, the process if y 62 � then P else Q is im-
plemented by means of nested conditionals; we omit all the details.

C�
xhvi = x(y : A).if y = v then eh�1i else0 A

def= �?(x), �1
def= � after xhvi

C�
(v)xhvi = x(y : A).if y 62 � then eh�1i else0 A

def= �!(x), �1
def= � after (v)xhvi

C�
x(v) = xhvi.eh�1i �1

def= � after x(v)

C�
(v:T )x(v) = (⌫v : T )xhvi.eh�1i �1

def= � after (v : T )x(v)

To show (1), assume � / P
↵�! �0 / P 0. First notice that given e fresh to � we have

e 62 fv(P ). Consider the case ↵ = xhvi. From Lemma 4.4 we deduce that �?(x) #
and in turn infer the shape of P : P ⌘ (⌫x̃ : T̃ )(xhvi.P1 | P2) with {x, v} \ x̃ = ;.
First we infer �, e : (?(�0), !(�0)) ` C�

↵

. Next, by applications of [R-Com] we have
P | C�

xhvi =) (⌫x̃ : T̃ )(P1 | P2 | eh�0i) . Now consider the case ↵ = (v : T )x(v). From
�w(x) # and �0 = �1 we infer �, e : (?(�0), !(�0)) ` C�

↵

. We infer the shape of P :
P ⌘ (⌫x̃ : T̃ )(x(y).P1 | P2) with x 62 x̃. By applications of [R-Com] we infer the desired
result, P | C�

(v:T )x(v) =) (⌫v : T, x̃ : T̃ )(P1[v/x] | P2 | eh�0i) .
Consider case (2) and assume C�

↵

| P =) (⌫x̃ : T̃ )(P 0 | ehṽi). Let ↵ = xhvi. Therefore
to unblock the signal ehṽi it must be that P has interacted with C�

↵

, because e 62
fv(P ). Moreover the output on e is unblocked only if v is sent over y. We infer that
P =) P1 ⌘ (⌫x̃ : T̃ )(xhvi.P1 | P2) with {x, v} \ x̃ = ;. Moreover, we infer that (⌫x̃ :
T̃ )(P1 | P2 =) P 0), since after the interaction over x with C�

↵

no other synchronization
is possible. Since �, e : (?(�0), !(�0)) ` C�

↵

, with appropriate type �0, we deduce that
�?(x) #. By applications of [L-Res],[L-Par] and [L-Out], followed by [L-Red] we infer
that � / P 0 ↵=) �0 / P 0.

Based on the lemma above, we prove that bisimulation is complete with respect to typed
behavioral equivalence.

Proposition 5.2 (Completeness). If � |= P ⇠= Q then � |= P ⇡ Q.

Proof. We follow the construction of (Hennessy 2007). Let � |= P RQ whenever
� |= P ⇠= Q. Assume � / P

↵�! �0 / P 0. If ↵ = µ we have �0 = � and we find Q0

such that � / P =) � / Q0 with � |= P 0 ⇠= Q0, as requested. Let ↵ = (ỹ)xhṽi. Therefore
�?(x) #. We take e fresh to � and infer �, e : (?(�0), !(�0)) ` C�

↵

. We apply Lemma 5.1
and infer P | C�

↵

=) (⌫x̃ : T̃ )(P 0 | eh�0i). Take f fresh to �, e 6= f , and let C
f

= ghi |
e(x̃).g().fhx̃i where |x̃| = |dom(�)|. Defining ⌦ = �, e : (?(�0), !(�0)), f : (?(�0), !(�0))
we infer that (i) ⌦ ` C

f

and (ii) ⌦ |= C
f

| C�
↵

| P ⇠= C
f

| C�
↵

| Q, by contextuality of ⇠=.
We infer synchronization of C

f

with the redex of P | C�
↵

:

P | C�
↵

| C
f

=) (⌫x̃ : T̃ )(P 0 | eh�0i) | C
f

=) (⌫x̃ : T̃ )(P 0 | fh�0i)
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Let CP be the reached redex. The process on the right matches these moves:

Q | C�
↵

| C�
f

=) CQ

with ⌦ |= CP ⇠= CQ. Since ⌦ |= CP #
f ! and ⌦ 6|= CP #

g!, by barb preservation ⌦ |= CQ+
f !

and ⌦ 6|= CQ +
g!. We find Q0 such that CQ ⌘ (⌫x̃ : ˜̃T )(Q0 | fhṽi). Therefore the signal

g in C
f

has been consumed by unblocking e, which means that ṽ = (�0). We infer the
following reductions:

C�
↵

| Q =) (⌫x̃ : T̃ )(Q0 | eh�0i.)
We conclude that CQ ⌘ (⌫x̃ : T̃ )(Q0 | fh�0i). We apply Lemma 5.1 and infer that
� / Q =) �0 / Q0. To conclude we need the following result: �, e : (?(�0), !(�0)) |= (⌫x̃ :
T̃ )(P | eh�0i) ⇠= (⌫x̃ : T̃ )(Q | eh�0i) with e fresh to P,Q, for any environment �, implies
�0 |= P ⇠= Q. The proof of this lemma is similar to the one in (Giunti 2007, Chapter 2).
We conclude that � |= P 0 RQ0. The case ↵ = (ỹ : T̃ )x(ṽ) is similar, but easier.

Propositions 4.11 and 5.2 let us prove that typed behavioral equivalence coincides with
typed bisimulation.

Theorem 5.3 (Full abstraction). � |= P ⇠= Q if and only if � |= P ⇡ Q.

6. Applications

In this section we apply our theory and we show a couple of interesting equalities.
As a first example, we show that the process P 0 introduced in Section 1 is deadlocked.

We show this by proving that a(s : T ).P 0 is bisimilar to a(s : T ).0. That P 0 is deadlocked
then follows as a by-product. We have the following equation:

�, a : !T.end |= a(s : T ).P 0 ⇠= a(s : T ).0 (3)

where we remind that T
def= (?U.!I.end, !U.?I.end) and P 0 def= (shui.s(x : I).if x =

r then Q | P2. To prove equation (3), take the relation defined by �1 |= M RN whenever
(a) M = a(s : T ).P 0 and N = a(s : T ).0 and �1 = �, a : !T.end and �, a : ?T.end `
a(s : T ).P 0 and �0, a : ?T.end ` a(s : T ).0 and � ⇣ �,� ⇣ �0 or (b) M = P 0[t/s] and
N = 0 and �1 = �, a : end and �, a : end, t : T ` M and �00 ` 0 and � ⇣ �, t : T and
�1 ⇣ �0. It is not di�cult to show that R is a bisimulation, and hence a proof of (3) given
that ⇠==⇡ (cf. Theorem 5.3). That R is a type-indexed relation is straightforward. Let
�/M

↵�! �0/M 0. In case a) we infer that rule [L-In] or rule [L-Weak] has been applied,
and in turn that ↵ = (t̃ : T )a(t) for some t; therefore M 0 has the shape of the left process
of b). We match this move with �/N

↵�! �0/0. To use b) and conclude that �0 |= M 0 R0

we need to check the desired properties for �0 and for the type environment for M 0 and 0.
Let t̃ = t and T̃ = T 0; the case T̃ empty is easier. We note that the environment �0 is equal
to � after (t : T 0)a(t), which is the environment �, t : >, a : end. This follows from T 0 = T

and (T ⌦ T 00) # i↵ T 00 = >. Next, we take �, a : ?T.end ` a(s : T ).P 0 and weaken it to
�, a : ?T.end, t : > ` a(s : T ).P 0. By the rule for typing an input, [T-In], and substitution
(cf. Lemma 2.7), we infer �, a : end, t : T ` P 0[t/s]. The compatibility result follows then
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by the hypothesis. The case for the environment typing process 0 is straightforward. This
complete the proof since in case b) process M is stuck because of �(t) = >. This follows
from � ⇣ �, t : T . The opposite direction is analogous.

The second equation establishes the secrecy of an exchange of a confidential informa-
tion p which occurs on a session b that is not accessible by the context. This example
shows that the typed discipline based on sessions can also be used to enforce discretionary
access policies to communication channels, and that we can establishes our security equa-
tions by reasoning on the typed knowledge of the context of such channels.

P
def= (⌫p : C)(bhpi) | b(x).Q) p 6= b

�, b : > |= P ⇠= (⌫p : C)Q[p/x] (4)

To prove equation (4), let � |= M RN whenever a) M = P and N = (⌫p : C)Q[p/x]
and � ` M and �0 ` N and � = �1, B : > and � ⇣ � and � ⇣ �0 or b) M ⌘ N and
� ` M and �0 ` N and � ⇣ � and � ⇣ �0. We show that R is a bisimulation up to
structural equivalence, which in turn implies that R is a bisimulation; the proof of this
claim follows standard arguments. Let � / M

↵�! �0 / M 0. In case a) we do not match
this move since we claim that M 0 ⌘ N . Indeed, we can prove that the only applicable
rule is [L-Red], since the channel b is known by the environment at top type. Therefore
↵ = b and �0 = �, and by b) we infer infer �0 |= M 0 RN . Case (b) follows immediately
from the fact that structural congruent processes have the same moves. For the opposite
direction, assume � /N

↵�! �0 /N 0. We match this move with a) � /M
⌧�! ↵�! ⌘ N 0

or b) � / M
↵�! ⌘ N 0.

7. Conclusions

We have proposed a notion of typed observational equivalence for a pi calculus with ses-
sion types where the discerning capability of the observer is regulated by the type system.
Type checking forces contexts to not interfere with a session shared by two participants.
To avoid universal quantification over contexts, we provided for a proof technique based
on typed bisimulation semantics. To motivate our approach, we applied the typed be-
havioral reasoning to three examples and 1) proved a deadlock due to a programming
error, 2) established the secrecy of the exchange of a confidential information, and 3)
showing the ability of contexts to compare sessions by performing identity tests. We are
also applying our technique to the type checking algorithm for session types of (Giunti
2011) in order to prove that all processes with a correct behavior are type checked.

Session types, introduced in (Takeuchi, Honda and Kubo 1994; Honda, Vasconcelos
and Kubo 1998) for a dialect of pi calculus, are now a well established static analysis
technique for service oriented protocols which is utilized in various paradigms including
functional languages, object-oriented programming and operating systems; see (Dezani-
Ciancaglini and de’Liguoro 2009) for a recent overview. Our session types are based on
a channel type construct of the form (S1, S2) where each S

i

describes the behavior of
one end of the session (Giunti and Vasconcelos 2010). Slightly di↵erently to (Giunti and
Vasconcelos 2010), the type system analyzed in this paper follows an a�ne discipline
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and considers both polyadic communications and the ability to compare the identity of
names. We do not envisage di�culties in establishing the results of this paper in a linear
setting; we chose a more liberal typing discipline for the sake of a clean formulation of
the behavioral theory and to type more processes.

The presence of the type checker in our behavioural theory is necessary. Indeed, the
programming constructs of the pi calculus do not guarantee adequate protection for
session channel abstractions. While on hand the restriction operator can be used to
create channels which are free from the interference of the context, on the other hand
pi calculus processes can receive channels from the context, which in service-oriented
terminology consists in receiving sessions that have been delegated. In this situation, an
untyped context can easily cheat and break the desired equivalences by avoiding to follow
a correct discipline for the session it has delegated, as showed in Section 1.

Notions of untyped bisimulation have already been proposed for service oriented calculi;
see (Lanese, Ravara and Vieira 2011) for a comparison of behavioural theories for session-
based and correlation-based calculi for service-oriented computing. Independently from
us, typed bisimulation for asynchronous session types has been recently considered in
(Kouzapas, Yoshida and Honda 2011) for a dialect of pi calculus with primitives for
session initiation and bu↵ers. Bisimulation is defined over a labelled transition system
that omits session delegation and relies on a notion of process localisation. On contrast,
we tackle the full communication mechanism of pi calculus and provide for delegating a
session already known to the receiver, which is a non trivial feature in service oriented
computing (Yoshida and Vasconcelos 2007).

In the linear setting, the work close to ours is (Kobayashi, Pierce and Turner 1999),
which introduces a notion of barbed bisimulation for pi calculus in the presence of linear
types. While in (Kobayashi, Pierce and Turner 1999) linear types are distinct from unre-
stricted types, in our approach a�ne types evolve to unrestricted types; indeed the linear
types of (Kobayashi, Pierce and Turner 1999) can be encoded in the linear session types
of (Giunti and Vasconcelos 2010) by preserving typing, as shown by the author and Vas-
concelos. An untyped testing theory for a linear pi calculus with choices and subtyping
has been recently used in (Demangeon and Honda 2011) to prove full abstraction for an
encoding of (Honda, Vasconcelos and Kubo 1998).

Our results and techniques draw on typed equivalences for pi calculus in the pres-
ence of I\O types and subtyping (Hennessy 2007; Bugliesi and Giunti 2005). We do
not envisage di�culties in introducing subtyping for unrestricted types à la (Pierce
and Sangiorgi 1996); however, this seems to go in the opposite direction of the idea
of channel types. We therefore need to investigate subtyping solutions which take into
account the channel type construct. This would permit us to type more processes, as
Q

def= a(item).a(min bid).(!a(bid).P | ah20$i). The process abstracts one end of a ses-
sion established by an auction service in order to receive the name of an item and the
minimum bid. After that this mandatory information is received, the process waits for
an unbounded number of bids, and also proposes itself a bid. Unfortunately, we cannot
describe Q with an end point type of the form S since in the (termination) continuation
type both the input and the output capabilities would be needed.
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Lastly, we believe that the presence of matching in a pi calculus with session types
is of practical interest, since it permits to reason on the identity of sessions after that
they have been delegated. This point has been already discussed in (Giunti et al. 2009),
which introduces a session typing system for a variant of pi calculus with accept/request
primitives (Honda, Vasconcelos and Kubo 1998) and matching, and illustrates a system
with long running sessions of di↵erent degrees of trust relying on a database of malicious
sessions.
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Appendix A. Additional proofs

The first two proofs show respectively closure under substitution and subject reduction
for the type system presented in Section 2. The proof follows a schema similar to the
corresponding results in (Giunti and Vasconcelos 2010).

Proof of Lemma 2.7. We rely on an analogous result for values, namely that (1) if
�, x̃ : T̃ , ṽ : T̃ 0 ` P and (T̃ ⌦ T̃ 0) # then �, ṽ : T̃ ⌦ T̃ 0 ` v : T . The interesting case is
session delegation, which arises in rules [T-Out-L],[T-Out] and [T-Out]. It is su�cient
to analyze case [T-OutT]; we show the monadic case, the polyadic case is analogous but
the notation is heavier. We first tackle the case whether the variable to be substituted
is the object of the communication. Let �, y : T1 ⌦ T2, v : T ` xhyi.P be inferred from
�, y : T1 ⌦ T2, v : T ` x : !T

i

and �, y : T
j

, v : T ` P given that T
i

⌦ T
j

is defined for
i, j with the conditions in (⇤). We need to prove that if A

def= T ⌦ (T1 ⌦ T2) is defined
then �, v : A ` xhyi.P [v/y]. Indeed, when A is defined we have that T ⌦ T

j

is defined,
and then by applying (1) we infer �, v : T ⌦ T

j

` x[v/y] : !T
i

, and by induction we have
�, v : T ⌦ T

j

` P [v/y]. When j = 1, and in turn i = 2, the result follows directly by
applying [T-OutT]: �, v : (T ⌦ T1) ⌦ T2 ` xhyi.P [v/y]. Otherwise, when j = 2, by
applying [T-OutT] we obtain: �, v : T2⌦ (T ⌦T1) ` xhyi.P [v/y]. We exchange the order
of the end points by applying Lemma 2.4, and we infer �, v : (T ⌦T1)⌦T2 ` xhyi.P [v/y],
as desired. Consider now the case whether the variable x to be substituted in [T-OutT] is
the subject of the communication, and let �, x : T2, y : A, v : T1 ` xhyi.P be inferred from
�, x : T2, v : T1 ` x : ?B and �, x : T2, y : C, v : T1 ` P , where A = B ⌦ C, or A = C ⌦ B.
Assume that T1⌦T2 is defined. We need to prove that �, y : A, v : T1⌦T2 ` xhyi.P [v/y].
We apply (1) and infer �, v : T1⌦T2 ` v : ?B. By induction we obtain �, y : C, v : T1⌦T2 `
P [v/y]. We apply [T-OutT] and conclude.

Proof of Lemma 2.8. The proof is by induction on the reduction derivation, and
uses substitution (Lemma 2.7). Most inductive cases are straightforward; we draw some
example below. In case [R-Struct] we need a Lemma saying that typing preserves
structural congruence. The most interesting case is when the derivation of the reduction
step ends with rule [R-Com]. Assume xhṽi.P | x(ỹ).Q

x�! P | Q[ṽ/ỹ] and let ⌦ ` xhvi.P |
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x(y).Q. The judgment above has been inferred by using [T-Par] because

� ` xhṽi.P (5)
� ` x(ỹ).Q (6)
⌦ = �⌦� (7)

First notice that ⌦(x) has the form (B, B), because the environment ⌦ does permit to
type both the output and the input capability of x, which in our system is possible only by
types of the form (S1, S2), and because ⌦ is balanced. We have sub-cases corresponding
of combination of use of rules [T-Out] and [T-Out-L] to infer (5) and of rules [T-In]
and [T-In-L] to infer (6). The symmetric cases inferred from [T-In-R],[T-Out-R] can
be obtained by using Lemma 2.4.

a) ([T-Out]� [T-In]) �(x) = !B̃
i

.C �(x) = ?B̃
i

.C

b) ([T-OutT]� [T-InT]) �(x) = (!B̃
i

, ?B̃
i

) �(x) = (!B̃
i

, ?B̃
i

)

c) ([T-OutT]� [T-InT]) �(x) = (!B̃
i

, ?B̃
i

) �(x) = ?B̃
i

d) ([T-OutT]� [T-InT]) �(x) = !B̃
i

�(x) = (!B̃
i

, ?B̃
i

)

e) ([T-OutT]� [T-InT]) �(x) = !B̃
i

�(x) = ?B̃
i

(a) From (5) and [T-Out] we infer � = �1, ṽ : B̃1 ⌦ B̃2, x : !B̃
i

.C and �1, ṽ : B̃
j

, x :
C ` P with i, j as in (⇤). From (6) and [T-In] we infer � = �1, ṽ : T̃ , x : ?B̃

i

.C

and �1, ṽ : T̃ , x : C, ỹ : B̃
i

` P . From (� ⌦ �) # we infer that B̃
i

⌦ T̃ #, which
implies T̃ ⌦ B̃

i

# (cf. Lemma 2.3). We can apply substitution, Lemma 2.7, and infer
�1, ṽ : T̃ ⌦ B̃

i

, x : C ` Q[ṽ/ỹ]. Then we can apply [T-Par] and obtain:

(�1, ṽ : B̃
j

, x : C)⌦ (�1, ṽ : T̃ ⌦ B̃
i

, x : C) ` P | Q[ṽ/ỹ] .

(b-e) From (5) and [T-OutT] we infer � = �1, ṽ : B̃1 ⌦ B̃2 and �, ṽ : B̃
j

` P . From
(6) and [T-In] we infer �1, ṽ : T̃ , ỹ : B̃

i

` Q. We apply substitution (Lemma 2.7) and
infer �1, ṽ : T̃ ⌦ B̃

i

` Q[ṽ/ỹ]. An application of [T-Par] give us the expected result:
�, ṽ : B̃

j

⌦�1, ṽ : T̃ ⌦ B̃
i

` P | Q[ṽ/ỹ].

Case ([R-Par]). Assume P1 | P2

µ�! P 0 | P2 and let � ` P1 | P2 with � balanced.
Therefore rule [T-Par] has been applied with the following hypothesis: �1 ` P1 and
�2 ` P2 and � = �1 ⌦ �2. First, we note that �1,�2 are both balanced. We let the
reduction be inferred from P1

µ�! Q1 and assume by induction hypothesis that �1 ` Q1

with �1
x⇢ �1 whenever µ = x and �1(x) = �1(x) otherwise. In the latter case we apply

[T-Par] and infer the desired result, �1 ⌦ �2 ` Q1 | P2. In the former case we infer
the type �1(x). Whenever �1(x) = (?B̃, !B̃) we have that �1 = �1, and we proceed as
above. Otherwise we have that �1(x) = (?B̃.C, !B̃.C), �1(x) = (C,C), and �2(x) = >.
We apply [T-Par] and infer the desired result, �1 ⌦ �2 ` Q1 | P2.

Case ([R-Res-T]). We have (⌫x : B)P
⌧�! (⌫x : B0)P 0 inferred from P

x�! P 0 and
B

x⇢ B0. We apply [T-Res] and let � ` (⌫x : B)P be inferred from �, x : B ` P . By
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induction hypothesis �0 ` P 0 with �, x : B
x⇢ �0. Therefore �0 = �, x : B0. We apply

[T-Res] and conclude: � ` (⌫x : B0)P 0.

The next result shows that the typed actions introduced for processes in Section 4 do
indeed represent a labelled transition system.

Proof of Proposition 4.2. We rely on the following lemma which explains the behavior
of the semantics in Figure 4.

Lemma A.1. Let �1 / P1 be a configuration and let �1 ` P1 with �1 ⇣ �1. Assume
that �1 / P1

↵�! �2 / P2.

(↵ = ⌧) we have that �2 = �1 and �1 ` P2;
(↵ = x) we have that �2 = �1 and �2 ` P2 with �1

x⇢ �2;
(↵ = (ỹ : T̃ )x(ṽ)) we have that (�1, ỹ : T̃ ⌦ (�1, ỹ : >̃)

x⇢ �2 ⌦ �2 with �2 ` P and
�2 ⇣ �2;

(↵ = (ỹ)xhṽi) there are T̃ such that (�1, ỹ : >̃)⌦ (�1, y : T̃ )
x⇢ �2⌦�2 with �2 ` P and

�2 ⇣ �2;

Proof. The first two items are a consequence of Lemma 2.8. To see the third result, let

�1 / P1

(ỹ : T̃ )x(ṽ)
��������! �2 / P2. We proceed by induction on the last rule of the inference.

In case [L-In] we have that �1 ` x(z̃ : B̃
i

).P (⇤⇤) with the conditions (⇤) over i has
been inferred by using [T-In] since �1 = �0, x :?B̃

i

.C. Notice indeed that both [T-In-L]
and [T-In-R] do not apply since �!

1(x) is defined and �1 ⇣ �1; similarly, [T-InT] does
not apply since �1 ⌦ �1 is balanced. Therefore the judgement (⇤⇤) has been inferred
by �0, x : C, z̃ : B̃

i

` P . We rewrite �0 as �00, ṽ : T̃ . Next, note that �1 = �0, ṽ : B̃1 ⌦
B̃2, x :!B̃

i

.C. We have �1 ⌦ �1
x⇢ �0, ṽ : B̃

j

, x : C ⌦ �00, ṽ : B̃
i

⌦ T̃ , x : C. We close the
proof by applying substitution (Lemma 2.7), which permits to infer �00, ṽ : B̃

i

⌦ T̃ , x :
C ` P [ṽ/z̃]. Case [L-InT] is analogous, but easier. In case [L-Weak] assume �1 /

P1

(y : T,ỹ : T̃ )x(ṽ)
�����������! �2 / P2 and let the I.H. be �1, y : T / P

(ỹ:T̃ )x(ṽ)
�������! �2 / P2 with

(�1, y : T, ỹ : T̃ ⌦ (�1, y : T 0, ỹ : >̃)
x⇢ �2 ⌦ �2 with �2 ` P and �2 ⇣ �2. Note that

y 62 fv(P ), because y is bound in ↵. From this fact we infer that (�1, y : >, ỹ : >̃) `
P1 and (�2\y), y : T ` P2, where the notation �\z stands for � less the entry for z.
From (�1, y : T, ỹ : T̃ ⌦ (�1, y : >, ỹ : >̃)

x⇢ �2 ⌦ (�2\y), y : T we obtain the desired
result. The remaining cases follow from induction. To show the fourth item, assume that

�1 / P1

(ỹ)xhṽi
�����! �2 / P2. Case [L-Out] is specular to [L-In]. We have that [T-Out] has

been used in order to infer �1 ` xhṽi.P2, since rules [T-Out-L] and [T-Out-R] do not
apply because of �!

1(x) defined, and rule [T-OutT] does not apply because of �1 ⌦ �1

is balanced. We infer the shape of �1 and �1, and proceed similarly to case [L-In] and
obtain the desired result. Case [L-OutT] is similar, but easier. Take now case [L-Open]

and let �1 / (⌫y : T )P1

(y,ỹ) xhṽi
�������! �2 /P2 be inferred from �1, y : >/P1

(ỹ)xhṽi
�����! �2 /P2

where �1 ` (⌫y : T )P1 and �1 ⇣ �1. From [T-Res] we infer �1, y : T ` P1. By I.H. there
are T̃ such that �1, y : >, ỹ : >̃⌦�1, y : T, ỹ : T̃

x⇢ �2⌦�2 where �2 ` P2 and �2 ⇣ �2.
This is the desired result.
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Based on the lemma above, we can easily prove that typed actions preserve configurations,
and in turn that Figure 4 is a labelled transition system.

The next result shows the type > is less informative than the other types.

Proof of Lemma 4.6 We proceed by co-induction and show that �, x : >⌦T2 |= P RQ

whenever �, x : T1⌦T2 |= P ⇡ Q is a bisimulation. The result follows by letting T2 = >.
That R is a typed-index relation follows from T1 ⌦ T2 ⌦ T3 balanced implies T2 ⌦ T

balanced. To see that R ✓⇡, let �, x : >⌦T2 /P
↵�! �0 /P 0. If x 62 fv(↵) we easily infer

�0 = �1, x : >⌦ T2 and �, x : T1 ⌦ T2 / P
↵�! �1, x : T1 ⌦ T2 / P 0. We find Q0 such that

�, x : T1⌦T2 /Q
↵=) �1, x : T1⌦T2 /Q0 with �1, x : T1⌦T2 |= P 0 ⇡ Q0. From x 62 fv(↵)

we infer �, x : >⌦T2 /Q
↵=) �1, x : >⌦T2 /Q0. We infer that �1, x : >⌦T2 |= P 0 RQ0,

as required. Now assume that ↵ = (ỹ : T̃ )x(ṽ) or ↵ = (ỹ)xhṽi with x 62 ṽ. Therefore
the reduction has been allowed by the type T2, since type top forbids any interaction
over x. We infer �0 = �1, x : > ⌦ T 0

2 where T 0
2 = T2 when T2 is a termination type

and T 0
2 = C when T2 =?B̃.C or T2 =!B̃.C. Notice that other cases are not possible,

because of the compatibility hypothesis �, x : >⌦T2 ⇣ �1 for some �1 such that �1 ` P .
We infer that �, x : T1 ⌦ T2 / P

↵�! �1, x : T1 ⌦ T 0
2 / P 0. We then close this case by

exploiting the properties of ⇡, following the same steps as above. Now consider the case
↵ = (ỹ)zhx, ṽi with x 62 ỹ. Therefore there is T3 such that �0 = �1, x : (>⌦T2)⌦T3 and
�, x : T1 ⌦ T2 / P

↵�! �00 / P 0 with �00 = �1, x : (T1 ⌦ T2) ⌦ T3. We find Q0 such that
�, x : T1 ⌦ T2 / Q

↵=) �00 / Q0 and �00 |= P 0 ⇡ Q0. From the reductions above we easily
infer �, x : >⌦ T2 / Q

↵=) �1, x : (>⌦ T2)⌦ T3 / Q0. From associativity of ⌦ we obtain
�0 |= P 0 RQ0, and we are done.


